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CHAPTER ONE 

Introduction to Computer Systems 

The technological advances witnessed in the computer industry are 

the result of a long chain of immense and successful efforts made by 

two major forces. These are the academia, represented by university 

research centers, and the industry, represented by computer 

companies. It is; however, fair to say that the current technological 

advances in the computer industry owe their inception to university 

research centers. In order to appreciate the current technological 

advances in the computer industry, one has to trace back through the 

history of computers and their development. The objective of such 

historical review is to understand the factors affecting computing as 

we know it today and hopefully to forecast the future of computation. 

A great majority of the computers of our daily use are known as 

general purpose machines. These are machines that are built with no 

specific application in mind, but rather are capable of performing 

computation needed by a diversity of applications. These machines 

are to be distinguished from those built to serve (tailored to) specific 

applications. The latter are known as special purpose machines.  

Computer systems have conventionally been defined through their 

interfaces at a number of layered abstraction levels, each providing 

functional support to its predecessor. Included among the levels are 

the application programs, the high-level languages, and the set of 

machine instructions. Based on the interface between different levels 

of the system, a number of computer architectures can be defined. 

The interface between the application programs and a high-level 

language is referred to as language architecture.  

The instruction set architecture defines the interface between the 

basic machine instruction set and the runtime and I/O control. A 

different definition of computer architecture is built on four basic 

viewpoints. These are the structure, the organization, the 

implementation, and the performance. In this definition, the structure 

defines the interconnection of various hardware components, the 

organization defines the dynamic interplay and management of the 

various components, the implementation defines the detailed design 
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of hardware components, and the performance specifies the behavior 

of the computer system.  

 

Historical Background 

In this section, we would like to provide a historical background on 

the evolution of cornerstone ideas in the computing industry. We 

should emphasize at the outset that the effort to build computers has 

not originated at one single place. There is every reason for us to 

believe that attempts to build the first computer existed in different 

geographically distributed places. We also firmly believe that 

building a computer requires teamwork. Therefore, when some 

people attribute a machine to the name of a single researcher, what 

they actually mean is that such researcher may have led the team who 

introduced the machine. We, therefore, see it more appropriate to 

mention the machine and the place it was first introduced without 

linking that to a specific name. We believe that such an approach is 

fair and should eliminate any controversy about researchers and their 

names. It is probably fair to say that the first program-controlled 

(mechanical) computer ever build was the Z1 (1938). This was 

followed in 1939 by the Z2 as the first operational program-

controlled computer with fixed-point arithmetic.  

However, the first recorded university-based attempt to build a 

computer originated on Iowa State University campus in the early 

1940s. Researchers on that campus were able to build a small-scale 

special-purpose electronic computer. However, that computer was 

never completely operational. Just about the same time a complete 

design of a fully functional programmable special-purpose machine, 

the Z3, was reported in Germany in 1941. It appears that the lack of 

funding prevented such design from being implemented. History 

recorded that while these two attempts were in progress, researchers 

from different parts of the world had opportunities to gain first-hand 

experience through their visits to the laboratories and institutes 

carrying out the work. It is assumed that such first-hand visits and 

interchange of ideas enabled the visitors to embark on similar 

projects in their own laboratories back home. 

As far as general-purpose machines are concerned, the University of 

Pennsylvania is recorded to have hosted the building of the 
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Electronic Numerical Integrator and Calculator (ENIAC) machine in 

1944. It was the first operational general-purpose machine built using 

vacuum tubes. The machine was primarily built to help compute 

artillery firing tables during World War II. It was programmable 

through manual set-ting of switches and plugging of cables. The 

machine was slow by today’s standard, with a limited amount of 

storage and primitive programmability. An improved version of the 

ENIAC was proposed on the same campus. The improved version of 

the ENIAC, called the Electronic Discrete Variable Automatic 

Computer (EDVAC), was an attempt to improve the way programs 

are entered and explore the concept of stored programs. 

It was not until 1952 that the EDVAC project was completed. 

Inspired by the ideas implemented in the ENIAC, researchers at the 

Institute for Advanced Study (IAS) at Princeton built (in 1946) the 

IAS machine, which was about 10 times faster than the ENIAC. 

In 1946 and while the EDVAC project was in progress, a similar 

project was initiated at Cambridge University. The project was to 

build a stored-program com-puter, known as the Electronic Delay 

Storage Automatic Calculator (EDSAC). It was in 1949 that the 

EDSAC became the world’s first full-scale, stored-program, fully 

operational computer. A spin-off of the EDSAC resulted in a series 

of machines introduced at Harvard. The series consisted of MARK I, 

II, III, and IV. The latter two machines introduced the concept of 

separate memories for instructions and data. The term Harvard 

Architecture was given to such machines to indicate the use of 

separate memories. It should be noted that the term Harvard 

Architecture is used today to describe machines with separate cache 

for instructions and data. 

The first general-purpose commercial computer, the UNIVersal 

Automatic Computer (UNIVAC I), was on the market by the middle 

of 1951. It represented an improvement over the BINAC, which was 

built in 1949. IBM announced its first com-puter, the IBM701, in 

1952. The early 1950s witnessed a slowdown in the computer 

industry. In 1964 IBM announced a line of products under the name 

IBM 360 series. The series included a number of models that varied 

in price and performance. This led Digital Equipment Corporation 
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(DEC) to introduce the first minicomputer, the PDP-8. It was 

considered a remarkably low-cost machine. 

Intel introduced the first microprocessor, the Intel 4004, in 1971. The 

world witnessed the birth of the first personal computer (PC) in 1977 

when Apple computer series were first introduced. In 1977 the world 

also witnessed the introduction of the VAX-11/780 by DEC. Intel 

followed suit by introducing the first of the most popular 

microprocessor, the 80 86 series. 

Personal computers, which were introduced in 1977 by Altair, 

Processor Technology, North Star, Tandy, Commodore, Apple, and 

many others, enhanced the productivity of end-users in numerous 

departments. Personal computers from Compaq, Apple, IBM, Dell, 

and many others, soon became pervasive, and changed the face of 

computing. 

In parallel with small-scale machines, supercomputers were coming 

into play. The first such supercomputer, the CDC 6600, was 

introduced in 1961 by Control Data Corporation. Cray Research 

Corporation introduced the best cost/performance supercomputer, the 

Cray-1, in 1976. 

The 1980s and 1990s witnessed the introduction of many 

commercial parallel computers with multiple processors. They can 

generally be classified into two main categories: (1) shared memory 

and (2) distributed memory systems. The number of processors in a 

single machine ranged from several in a shared memory computer to 

hundreds of thousands in a massively parallel system. Examples of 

parallel computers during this era include Sequent Symmetry, Intel 

iPSC, nCUBE, Intel Paragon, Thinking Machines (CM-2, CM-5), 

MsPar (MP), Fujitsu (VPP500), and others. 

One of the clear trends in computing is the substitution of centralized 

servers by networks of computers. These networks connect 

inexpensive, powerful desktop machines to form unequaled 

computing power. Local area networks (LAN) of powerful personal 

computers and workstations began to replace mainframes and minis 

by 1990. These individual desktop computers were soon to be 

connected into larger complexes of computing by wide area networks 

(WAN). 
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TABLE 1.1 Four Decades of Computing 

 

 

Feature Batch Time-sharing Desktop Network 
     

Decade 1960s 1970s 1980s 1990s 

Location Computer room Terminal room Desktop Mobile 

Users Experts Specialists Individuals Groups 

Data Alphanumeric Text, numbers Fonts, graphs Multimedia 

Objective Calculate Access Present Communicate 

Interface Punched card Keyboard & CRT See & point Ask & tell 

Operation Process Edit Layout Orchestrate 

Connectivity None Peripheral cable LAN Internet 

Owners Corporate computer Divisional IS shops Departmental Everyone 

 centers  end-users  
     

 

CRT, cathode ray tube; LAN, local area network. 

 

 

The pervasiveness of the Internet created interest in network 

computing and more recently in grid computing. Grids are 

geographically distributed platforms of com-putation. They should 

provide dependable, consistent, pervasive, and inexpensive access to 

high-end computational facilities. Table 1.1 is modified from a table 

proposed by Lawrence Tesler (1995). In this table, major 

characteristics of the different computing paradigms are associated 

with each decade of computing, starting from 1960. 

 

Architectural Development And Styles 

Computer architects have always been striving to increase the 

performance of their architectures. This has taken a number of forms. 

Among these is the philosophy that by doing more in a single 

instruction, one can use a smaller number of instructions to perform 

the same job. The immediate consequence of this is the need for 

fewer memory read/write operations and an eventual speedup of 

operations. It was also argued that increasing the complexity of 

instructions and the number of addressing modes has the theoretical 

advantage of reducing the “semantic gap” between the instructions in 

a high-level language and those in the low-level (machine) language. 

A single (machine) instruction to convert several binary coded 

decimal (BCD) numbers to binary is an example for how complex 



ADESINA O.B/CTE 214 Page 7 
 

some instructions were intended to be. The huge number of 

addressing modes considered (more than 20 in the VAX machine) 

further adds to the complexity of instructions. Machines following 

this philosophy have been referred to as complex instructions set 

computers (CISCs). Examples of CISC machines include the Intel 

PentiumTM, the Motorola MC68000TM, and the IBM & Macintosh 

PowerPCTM. 

It should be noted that as more capabilities were added to their 

processors, manufacturers realized that it was increasingly difficult to 

support higher clock rcomplexity of computations within a single 

clock period. A number of studies from the mid-1970s and early-

1980s also identified that in typical programs more than 80% of the 

instructions executed are those using assignment statements, 

conditional branching and procedure calls. It was also surprising to 

find out that simple assign-ment statements constitute almost 50% of 

those operations. These findings caused a different philosophy to 

emerge. This philosophy promotes the optimization of architectures 

by speeding up those operations that are most frequently used while 

reducing the instruction complexities and the number of addressing 

modes. Machines following this philosophy have been referred to as 

reduced instructions set computers (RISCs). Examples of RISCs 

include the Sun SPARCTM and MIPSTM machines. 

The above two philosophies in architecture design have led to the 

unresolved controversy as to which architecture style is “best.” It 

should, however, be mentioned that studies have indicated that RISC 

architectures would indeed lead to faster execution of programs. The 

majority of contemporary microprocessor chips seems to follow the 

RISC paradigm. In this book we will present the salient features and 

examples for both CISC and RISC machines. 

 

Technological Development 

Computer technology has shown an unprecedented rate of 

improvement. This includes the development of processors and 

memories. Indeed, it is the advances in technology that have fueled 

the computer industry. The integration of numbers of transistors (a 

transistor is a controlled on/off switch) into a single chip has 

increased from a few hundred to millions. This impressive increase 
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has been made possible by the advances in the fabrication technology 

of transistors. 

The scale of integration has grown from small-scale (SSI) to 

medium-scale (MSI) to large-scale (LSI) to very large-scale 

integration (VLSI), and currently to wafer-scale integration (WSI). 

Table 1.2 shows the typical numbers of devices per chip in each of 

these technologies. It should be mentioned that the continuous 

decrease in the minimum devices feature size has led to a continuous 

increase in the number of devices per chip, 
TABLE 1.2 Numbers of Devices per Chip 

 

 

Integration Technology Typical number of devices Typical functions 
     

SSI Bipolar 10 – 20 Gates and flip-flops 

MSI Bipolar & MOS 50 – 100 Adders & counters 

LSI Bipolar & MOS 100 – 10,000 ROM & RAM 

VLSI CMOS (mostly) 10,000 – 5,000,000 Processors 

WSI CMOS .5,000,000 DSP & special purposes 
     

 

 

which in turn has led to a number of developments. Among these is 

the increase in the number of devices in RAM memories, which in 

turn helps designers to trade off memory size for speed. The 

improvement in the feature size provides golden opportunities for 

introducing improved design styles. 

 

 

 

CHAPTER 2 

Instruction Set Architecture and Design 

In this chapter, we consider the basic principles involved in 

instruction set architecture and design. Our discussion starts with a 

consideration of memory locations and addresses. We present an 

abstract model of the main memory in which it is considered as a 

sequence of cells each capable of storing n bits. We then address 

the issue of storing and retrieving information into and from the 

memory. The information stored and/or retrieved from the memory 

needs to be addressed.  
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A discussion on a number of different ways to address memory 

locations (addressing modes) is the next topic to be discussed in the 

chapter. A program consists of a number of instructions that have to 

be accessed in a certain order. That motivates us to explain the issue 

of instruction execution and sequencing in some detail. We then 

show the application of the presented addressing modes and 

instruction characteristics in writing sample segment codes for 

performing a number of simple programming tasks. 

A unique characteristic of computer memory is that it should be 

organized in a hierarchy. In such hierarchy, larger and slower 

memories are used to supplement smaller and faster ones. A typical 

memory hierarchy starts with a small, expensive, and relatively fast 

module, called the cache. The cache is followed in the hierarchy by 

a larger, less expensive, and relatively slow main memory part. 

Cache and main memory are built using semiconductor material. 

They are followed in the hierarchy by larger, less expensive, and far 

slower magnetic memories that consist of the (hard) disk and the 

tape. Our concentration in this chapter is on the (main) memory 

from the programmer’s point of view. In particular, we focus on the 

way information is stored in and retrieved out of the memory. 

 

 

Memory Locations and Operations 

The (main) memory can be modeled as an array of millions of 

adjacent cells, each capable of storing a binary digit (bit), having 

value of 1 or 0. These cells are organized in the form of groups of 

fixed number, say n, of cells that can be dealt with as an atomic 

entity. An entity consisting of 8 bits is called a byte. In many 

systems, the entity consisting of n bits that can be stored and 

retrieved in and out of the memory using one basic memory 

operation is called a word (the smallest addressable entity). Typical 

size of a word ranges from 16 to 64 bits. It is, however, customary to 

express the size of the memory in terms of bytes. For example, the 

size of a typical memory of a personal computer is 256 Mbytes, that 

is, 256 220 ¼ 228 bytes. 

In order to be able to move a word in and out of the memory, a 

distinct address has to be assigned to each word.  
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This address will be used to determine the location in the memory in 

which a given word is to be stored. This is called a memory write 

operation. Similarly, the address will be used to determine the 

memory location from which a word is to be retrieved from the 

memory. This is called a memory read operation. The number of bits, 

l, needed to distinctly address M words in a memory is given by l ¼ 

log2 M. 

For example, if the size of the memory is 64 M (read as 64 mega-

words), then the number of bits in the address is log2 (64 220) ¼ log2 

(226) ¼ 26 bits. Alternatively, if the number of bits in the address is l, 

then the maximum memory size (in terms of the number of words 

that can be addressed using these l bits) is M ¼ 2l. Figure 2.1 

illustrates the concept of memory words and word address as 

explained above. 

As mentioned above, there are two basic memory operations. These 

are the memory write and memory read operations. During a memory 

write operation a word is stored into a memory location whose 

address is specified. During a memory read operation a word is read 

from a memory location whose address is specified. Typically, 

memory read and memory write operations are performed by the 

central processing unit (CPU). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Illustration of the direct addressing mode 
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Three basic steps are needed in order for the CPU to perform a write 

operation into a specified memory location: 

 The word to be stored into the memory location is first loaded 

by the CPU into a specified register, called the memory data 

register (MDR). 

 The address of the location into which the word is to be stored 

is loaded by the CPU into a specified register, called the 

memory address register (MAR). 

 A signal, called write, is issued by the CPU indicating that the 

word stored in the MDR is to be stored in the memory 

location whose address in loaded in the MAR. 

Figure 2.2 illustrates the operation of writing the word given by 7E 

(in hex) into the memory location whose address is 2005. Part a of 

the figure shows the status of the registers and memory locations 

involved in the write operation before the execution of the operation. 

Part b of the figure shows the status after the execution of the 

operation. It is worth mentioning that the MDR and the MAR are 

registers used exclusively by the CPU and are not accessible to the 

programmer. 

Similar to the write operation, three basic steps are needed in order to 

perform a memory read operation: 

 The address of the location from which the word is to be read 

is loaded into the MAR. 

 A signal, called read, is issued by the CPU indicating that the 

word whose address is in the MAR is to be read into the 

MDR 

 After some time, corresponding to the memory delay in reading 

the specified word, the required word will be loaded by the 

memory into the MDR ready for use by the CPU. 
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Before execution                               After execution 

 

Figure 2.2 Illustration of the memory write operation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Illustration of the memory read operation 

 

Figure 2.3 illustrates the operation of reading the word stored in the memory 

location whose address is 2010. Part a of the figure shows the status of the 

registers and memory locations involved in the read operation before the execution 

of the operation. Part b of the figure shows the status after the read operation. 
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Addressing Modes 

Information involved in any operation performed by the CPU needs 

to be addressed. In computer terminology, such information is called 

the operand. Therefore, any instruction issued by the processor must 

carry at least two types of information. These are the operation to be 

performed, encoded in what is called the op-code field, and the 

address information of the operand on which the operation is to be 

performed, encoded in what is called the address field. 

Instructions can be classified based on the number of operands as: 

three-address, two-address, one-and-half-address, one-address, and 

zero-address. We explain these classes together with simple 

examples in the following paragraphs. It should be noted that in 

presenting these examples, we would use the convention operation, 

source, destination to express any instruction. In that convention, 

operation rep-resents the operation to be performed, for example, 

add, subtract, write, or read. The source field represents the source 

operand(s). The source operand can be a constant, a value stored in a 

register, or a value stored in the memory. The destination field 

represents the place where the result of the operation is to be stored, 

for example, a register or a memory location. 

 three-address instruction takes the form operation add-1, add-2, 

add-3. 

 In this form, each of add-1, add-2, and add-3 refers to a register or to 

a memory location. Consider, for example, the instruction ADD 

R1,R2,R3. This instruction indicates that the operation to be 

performed is addition. It also indicates that the values to be added are 

those stored in registers R1 and R2 that the results should be stored in 

register R3. 

An example of a three-address instruction that refers to memory 

locations may take the form ADD A,B,C. The instruction adds the 

contents of memory location A to the contents of memory location B 

and stores the result in memory location C. 

A two-address instruction takes the form operation add-1, add-2. 

In this form, each of add-1 and add-2 refers to a register or to a 

memory location. Consider, for example, the instruction ADD R1,R2. 

This instruction adds the contents of register R1 to the contents of 

register R2 and stores the results in register R2.  
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The original contents of register R2 are lost due to this operation 

while the original contents of register R1 remain intact. This 

instruction is equivalent to a three-address instruction of the form 

ADD R1,R2,R2. A similar instruction that uses memory locations 

instead of registers can take the form ADD A,B. In this case, the 

contents of memory location A are added to the contents of memory 

location B and the result is used to override the original contents of 

memory location B. 

The operation performed by the three-address instruction ADD 

A,B,C can be per-formed by the two two-address instructions MOVE 

B,C and ADD A,C. This is because the first instruction moves the 

contents of location B into location C and the second instruction adds 

the contents of location A to those of location C (the con-tents of 

location B) and stores the result in location C. 

A one-address instruction takes the form ADD R1. In this case the 

instruction implicitly refers to a register, called the Accumulator Racc, 

such that the contents of the accumulator is added to the contents of 

the register R1 and the results are stored back into the accumulator 

Racc.  

If a memory location is used instead of a register then an instruction 

of the form ADD B is used. In this case, the instruction adds the 

content of the accumulator Racc to the content of memory location B 

and stores the result back into the accumulator Racc. The instruction 

ADD R1 is equivalent to the three-address instruction ADD 

R1,Racc,Racc or to the two-address instruction ADD R1,Racc. 

Between the two- and the one-address instruction, there can be a one-

and-half address instruction. Consider, for example, the instruction 

ADD B,R1. In this case, the instruction adds the contents of register 

R1 to the contents of memory location B and stores the result in 

register R1. Owing to the fact that the instruction uses two types of 

addressing, that is, a register and a memory location, it is called a 

one-and-half-address instruction. This is because register addressing 

needs a smaller number of bits than those needed by memory 

addressing. 

It is interesting to indicate that there exist zero-address instructions. 

These are the instructions that use stack operation.  
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A stack is a data organization mechanism in which the last data item 

stored is the first data item retrieved. Two specific operations can be 

performed on a stack. These are the push and the pop operations. 

Figure 2.4 illustrates these two operations. 

As can be seen, a specific register, called the stack pointer (SP), is 

used to indicate the stack location that can be addressed. In the stack 

push operation, the SP value is used to indicate the location (called 

the top of the stack) in which the value (5A) is to be stored (in this 

case it is location 1023). After storing (pushing) this value the SP is 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 The stack push and pop operations 

 

 

incremented to indicate to location 1024. In the stack pop operation, 

the SP is first decremented to become 1021. The value stored at this 

location (DD in this case) is retrieved (popped out) and stored in the 

shown register. Different operations can be performed using the stack 

structure. Consider, for example, an instruction such as ADD (SP)þ, 

(SP). The instruction adds the contents of the stack location pointed 

to by the SP to those pointed to by the SP þ 1 and stores the result on 

the stack in the location pointed to by the current value of the SP. 

Figure 2.5 illustrates such an addition operation. Table 2.1 

summarizes the instruction classification discussed above. 
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The different ways in which operands can be addressed are called the 

addressing modes. Addressing modes differ in the way the address 

information of operands is specified. The simplest addressing mode 

is to include the operand itself in the instruction, that is, no address 

information is needed. This is called immediate addressing.  

A more involved addressing mode is to compute the address of the 

operand by adding a constant value to the content of a register. This 

is called indexed addressing. Between these two addressing modes 

there exist a number of other addressing modes including absolute 

addressing, direct addressing, and indirect addressing. A number of 

different addressing modes are explained below. 

 

 

 

SP   - 52 1000    - 13 1000 
  

SP        
    

1001 

    

1001    39    39 

   1050 1002    1050 1002 

          

          

          

 

 

Figure 2.5 Addition using the stack 

  

TABLE 2.1  Instruction Classification   
   

Instruction class Example 
   

Three-address ADD R1,R2,R3 

 ADD A,B,C 

Two-address ADD R1,R2 

 ADD A,B 

One-and-half-address ADD B,R1 

One-address ADD R1 

Zero-address ADD (SP)þ, (SP)  

 2.2. ADDRESSING MODES21 
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Immediate Mode 

According to this addressing mode, the value of the operand is 

(immediately) avail-able in the instruction itself. Consider, for 

example, the case of loading the decimal value 1000 into a register 

Ri. This operation can be performed using an instruction such as the 

following: LOAD #1000, Ri. In this instruction, the operation to be 

per-formed is to load a value into a register. The source operand is 

(immediately) given as 1000, and the destination is the register Ri. It 

should be noted that in order to indicate that the value 1000 

mentioned in the instruction is the operand itself and not its address 

(immediate mode), it is customary to prefix the operand by the 

special character (#). As can be seen the use of the immediate 

addressing mode is simple. The use of immediate addressing leads to 

poor programming practice. This is because a change in the value of 

an operand requires a change in every instruction that uses the 

immediate value of such an operand. A more flexible addressing 

mode is explained below. 

 

 

 Direct (Absolute) Mode 

According to this addressing mode, the address of the memory 

location that holds the operand is included in the instruction. 

Consider, for example, the case of loading the value of the operand 

stored in memory location 1000 into register Ri. This operation can 

be performed using an instruction such as LOAD 1000, Ri. In this 

instruction, the source operand is the value stored in the memory 

location whose address is 1000, and the destination is the register Ri. 

Note that the value 1000 is not prefixed with any special characters, 

indicating that it is the (direct or absolute) address of the source 

operand. Figure 2.6 shows an illustration of the direct addressing 

mode.  



ADESINA O.B/CTE 214 Page 18 
 

For 

 
     

Memory Operation Address   
   

      

      
     

Operand      
      

      
      

 

 

Figure 2.6 Illustration of the direct addressing mode 

 

example, if the content of the memory location whose address is 

1000 was (2345) at the time when the instruction LOAD 1000, Ri is 

executed, then the result of executing such instruction is to load the 

value (2345) into register Ri. Direct (absolute) addressing mode 

provides more flexibility compared to the immediate mode. 

However, it requires the explicit inclusion of the operand address in 

the instruction. A more flexible addressing mechanism is provided 

through the use of the indirect addressing mode. This is explained 

below. 

 

 

Indirect Mode 

In the indirect mode, what is included in the instruction is not the 

address of the operand, but rather a name of a register or a memory 

location that holds the (effective) address of the operand. In order to 

indicate the use of indirection in the instruction, it is customary to 

include the name of the register or the memory location in 

parentheses. Consider, for example, the instruction LOAD (1000), Ri. 

This instruction has the memory location 1000 enclosed in 

parentheses, thus indicating indirection. The meaning of this 

instruction is to load register Ri with the contents of the memory 

location whose address is stored at memory address 1000. Because 

indirection can be made through either a register or a memory 

location, therefore, we can identify two types of indirect addressing. 

These are register indirect addressing, if a register is used to hold the 

address of the operand, and memory indirect addressing, if a memory 

location is used to hold the address of the operand. The two types are 

illustrated in Figure 2.7. 
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Figure 2.7 Illustration of the indirect addressing mode 

 

 

Indexed Mode 

In this addressing mode, the address of the operand is obtained by 

adding a constant to the content of a register, called the index 

register. Consider, for example, the instruction LOAD X(Rind), Ri. 

This instruction loads register Ri with the contents of the memory 

location whose address is the sum of the contents of register Rind and 

the value X. Index addressing is indicated in the instruction by 

including the name of the index register in parentheses and using the 

symbol X to indicate the constant to be added. Figure 2.8 illustrates 

indexed addressing. As can be seen, indexing requires an additional 

level of complexity over register indirect addressing. 

 

Other Modes 

The addressing modes presented above represent the most commonly 

used modes in most processors. They provide the programmer with 

sufficient means to handle most general programming tasks. 

However, a number of other addressing modes have been used in a 

number of processors to facilitate execution of specific programming 

tasks. These additional addressing modes are more involved as 

compared to those presented above.  
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Among these addressing modes the relative, auto-increment, and the 

auto-decrement modes represent the most well-known ones. These 

are explained below. 

Relative Mode Recall that in indexed addressing, an index register, 

Rind , is used. Relative addressing is the same as indexed addressing 

except that the program counter (PC) replaces the index register. For 

example, the instruction LOAD X(PC), Ri loads register Ri with the 

contents of the memory location whose address is the sum of the 

contents of the program counter (PC) and the value X.  

Figure 2.9 illustrates the relative addressing mode. 

Auto-increment Mode This addressing mode is similar to the register 

indirect addressing mode in the sense that the effective address of the 

operand is the content of a register; call it the auto-increment register, 

that is included in the instruction. 

 

Operation Value X      Memory 
           

           
           

           
      

+ 

   

 
Index Register (Rind) 

   
 operand     

           

           
           

 

 

Figure 2.8 Illustration of the indexed addressing mode 
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   Figure 2.9 Illustration of relative addressing mode 
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However, with auto-increment, the content of the auto-increment 

register is automatically incremented after accessing the operand. As 

before, indirection is indicated by including the auto-increment 

register in parentheses. The automatic increment of the register’s 

content after accessing the operand is indicated by including a (þ) 

after the parentheses. Consider, for example, the instruction LOAD 

(Rauto)þ, Ri. This instruction loads register Ri with the operand whose 

address is the content of register Rauto. After loading the operand into 

register Ri, the content of register Rauto is incremented, pointing for 

example to the next item in a list of items. Figure 2.10 illustrates the 

auto-increment addressing mode. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10 Illustration of the auto-increment addressing mode 
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Auto-decrement Mode Similar to the auto-increment, the auto-

decrement mode uses a register to hold the address of the operand. 

However, in this case the content of the auto-decrement register is 

first decremented and the new content is used as the effective address 

of the operand. In order to reflect the fact that the content of the auto-

decrement register is decremented before accessing the operand, a (2) 

is included before the indirection parentheses. Consider, for example, 

the instruction LOAD (Rauto), Ri. This instruction decrements the 

content of the register Rauto and then uses the new content as the 

effective address of the operand that is to be loaded into register Ri. 

Figure 2.11 illustrates the auto-decrement addressing mode. The 

seven addressing modes presented above are summarized in Table 

2.2. In each case, the table shows the name of the addressing mode, 

its definition, and a generic example illustrating the use of such 

mode. 

In presenting the different addressing modes we have used the load 

instruction for illustration. However, it should be understood that 

there are other types of instructions in a given machine. In the 

following section we elaborate on the different types of instructions 

that typically constitute the instruction set of a given machine. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11 Illustration of the auto-decrement addressing mode 
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TABLE 2.2 Summary of Addressing Modes 

 

 

Addressing     

mode Definition Example Operation 
     

Immediate Value of operand is included in load #1000, Ri Ri 1000 

 the instruction    

Direct Address of operand is included load 1000, Ri Ri M[1000] 

(Absolute) in the instruction    

Register Operand is in a memory load (Rj), Ri Ri M[Rj] 

indirect location whose address is in    

 the register specified in the    

 instruction    

Memory Operand is in a memory load (1000), Ri Ri M[1000] 

indirect location whose address is in    

 the memory location    

 specified in the instruction    

Indexed Address of operand is the sum load X(Rind), Ri 
R

i M[Rind þ X] 

 of an index value and the    

 contents of an index register    

Relative Address of operand is the sum load X(PC), Ri Ri M[PC þ X] 

 of an index value and the    

 contents of the program    

 counter    

Autoincrement Address of operand is in a load (Rauto)þ, Ri Ri M[Rauto] 

 register whose value is  
R

auto 
R

auto 
þ

 
1 

 incremented after fetching    

 the operand    

Autodecrement Address of operand is in a load 2 (Rauto), Ri 
R

auto 
R

auto 
2

 
1 

 register whose value is  Ri M[Rauto] 

 decremented before fetching    

 the operand    
     

 

 

Instruction Types 

The type of instructions forming the instruction set of a machine is an 

indication of the power of the underlying architecture of the machine. 

Instructions can in general be classified as in the following 

Subsections  
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Data Movement Instructions 

Data movement instructions are used to move data among the 

different units of the machine. Most notably among these are 

instructions that are used to move data among the different registers 

in the CPU. A simple register to register movement of data can be 

made through the instruction 

 

MOVE Ri,Rj 

   

TABLE 2.3  Some Common Data Movement Operations  
    

Data movement    

operation Meaning  
    

MOVE Move data (a word or a block) from a given source  

 (a register or a memory) to a given destination  

LOAD Load data from memory to a register  

STORE Store data into memory from a register  

PUSH Store data from a register to stack  

POP Retrieve data from stack into a register  
    

   

This instruction moves the content of register Ri to register Rj. The 

effect of the instruc-tion is to override the contents of the 

(destination) register Rj without changing the con-tents of the 

(source) register Ri. Data movement instructions include those used 

to move data to (from) registers from (to) memory. These 

instructions are usually referred to as the load and store instructions, 

respectively. Examples of the two instructions are 

 

LOAD 25838, Rj 

STORE Ri, 1024 

 

The first instruction loads the content of the memory location whose 

address is 25838 into the destination register Rj. The content of the 

memory location is unchanged by executing the LOAD instruction. 

The STORE instruction stores the content of the source register Ri 

into the memory location 1024. The content of the source register is 

unchanged by executing the STORE instruction. Table 2.3 shows 

some common data transfer operations and their meanings. 
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Arithmetic and Logical Instructions 

Arithmetic and logical instructions are those used to perform 

arithmetic and logical manipulation of registers and memory 

contents. Examples of arithmetic instructions include the ADD and 

SUBTRACT instructions. These are 

ADD R1,R2,R0 

SUBTRACT R1,R2,R0 

The first instruction adds the contents of source registers R1 and R2 

and stores the result in destination register R0. The second instruction 

subtracts the contents of the source registers R1 and R2 and stores the 

result in the destination register R0. The contents of the source 

registers are unchanged by the ADD and the SUBTRACT 

instructions. In addition to the ADD and SUBTRACT instructions, 

some machines have MULTIPLY and DIVIDE instructions. These 

two instructions are expensive to implement and could be substituted 

by the use of repeated addition or repeated subtraction. Therefore, 

most modern architectures do not have MULTIPLY or 
 

TABLE 2.4 Some Common Arithmetic Operations 

Arithmetic operations Meaning 
  

ADD Perform the arithmetic sum of two operands 

SUBTRACT Perform the arithmetic difference of two operands 

MULTIPLY Perform the product of two operands 

DIVIDE Perform the division of two operands 

INCREMENT Add one to the contents of a register 

DECREMENT Subtract one from the contents of a register 
  

 

DIVIDE instructions on their instruction set. Table 2.4 shows some 

common arithmetic operations and their meanings. Logical 

instructions are used to perform logical operations such as AND, OR, 

SHIFT, COMPARE, and ROTATE. As the names indicate, these 

instructions per-form, respectively, and, or, shift, compare, and rotate 

operations on register or memory contents. Table 2.5 presents a 

number of logical operations. 

 

Sequencing Instructions 

Control (sequencing) instructions are used to change the sequence in 

which instructions are executed.  
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They take the form of CONDITIONAL BRANCHING 

(CONDITIONAL JUMP), UNCONDITIONAL BRANCHING 

(JUMP), or CALL instructions. A common characteristic among 

these instructions is that their execution changes the program counter 

(PC) value.  The change made in the PC value can be unconditional, 

for example, in the unconditional branching or the jump instructions. 

In this case, the earlier value of the PC is lost and execution of the 

program starts at a new value specified by the instruction. Consider, 

for example, the instruction JUMP NEW-ADDRESS. Execution of 

this instruction will cause the PC to be loaded with the memory 

location represented by NEW-ADDRESS whereby the instruction 

stored at this new address is executed. On the other hand, 
TABLE 2.5 Some Common Logical Operations 

 

 

Logical operation Meaning 
  

AND Perform the logical ANDing of two operands 

OR Perform the logical ORing of two operands 

EXOR Perform the XORing of two operands 

NOT Perform the complement of an operand 

COMPARE Perform logical comparison of two operands and 

 set flag accordingly 

SHIFT Perform logical shift (right or left) of the content 

 of a register 

ROTATE Perform logical shift (right or left) with 

 wraparound of the content of a register 
  

 

   

TABLE 2.6  Examples of Condition Flags  
    

Flag name Meaning  
    

Negative (N) Set to 1 if the result of the most recent operation  

 is negative, it is 0 otherwise  

Zero (Z) Set to 1 if the result of the most recent operation  

 is 0, it is 0 otherwise  

Overflow (V) Set to 1 if the result of the most recent operation  

 causes an overflow, it is 0 otherwise  

Carry (C) Set to 1 if the most recent operation results in a  

 carry, it is 0 otherwise  
    

 

the change made in the PC by the branching instruction can be 

conditional based on the value of a specific flag.  
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Examples of these flags include the Negative (N), Zero (Z), 

Overflow (V), and Carry (C). These flags represent the individual 

bits of a specific register, called the CONDITION CODE (CC) 

REGISTER. The values of flags are set based on the results of 

executing different instructions. The meaning of each of these flags is 

shown in Table 2.6. 

Consider, for example, the following group of instructions. 

 

LOAD #100, R1 

Loop:  ADD (R2) þ , R0 

DECREMENT R1 

BRANCH-IF-GREATER-THAN Loop 

 

The fourth instruction is a conditional branch instruction, which 

indicates that if the result of decrementing the contents of register R1 

is greater than zero, that is, if the Z flag is not set, and then the next 

instruction to be executed is that labeled by Loop. It should be noted 

that conditional branch instructions could be used to exe-cute 

program loops (as shown above). 

The CALL instructions are used to cause execution of the program 

to transfer to a subroutine. A CALL instruction has the same effect as 

that of the JUMP in terms of loading the PC with a new value from 

which the next instruction is to be executed. However, with the 

CALL instruction the incremented value of the PC (to point to the 

next instruction in sequence) is pushed onto the stack. Execution of a 

RETURN instruction in the subroutine will load the PC with the 

popped value from the stack. This has the effect of resuming program 

execution from the point where branching to the subroutine has 

occurred. Figure 2.12 shows a program segment that uses the CALL 

instruction. This pro-gram segment sums up a number of values, N, 

and stores the result into memory location SUM. The values to be 

added are stored in N consecutive memory locations starting at 

NUM. The subroutine, called ADDITION, is used to perform the 

actual addition of values while the main program stores the results in 

SUM. 
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Figure 2.12 A program segment using a subroutine 

 

Input / Output Instructions 

Input and output instructions (I/O instructions) are used to transfer 

data between the computer and peripheral devices. The two basic I/O 

instructions used are the INPUT and OUTPUT instructions. The 

INPUT instruction is used to transfer data from an input device to the 

processor. Examples of input devices include a keyboard or a mouse. 

Input devices are interfaced with a computer through dedicated input 

ports. Computers can use dedicated addresses to address these ports. 

Suppose that the input port through which a keyboard is connected to 

a computer carries the unique address 1000. Therefore, execution of 

the instruction INPUT 1000 will cause the data stored in a specific 

register in the interface between the keyboard and the computer, call 

it the input data register, to be moved into a specific register (called 

the accumulator) in the computer. Similarly, the execution of the 

instruction OUTPUT 2000 causes the data stored in the accumulator 

to be moved to the data output register in the output device whose 

address is 2000. Alternatively, the computer can address these ports 

in the usual way of addressing memory locations.  
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In this case, the computer can input data from an input device by 

executing an instruction such as MOVE Rin, R0. This instruction 

moves the content of the register Rin into the register R0. Similarly, 

the instruction MOVE R0, Rin moves the contents of register R0 into 

the register Rin, that is, performs an output operation. This 
TABLE 2.7 Some Transfer of Control Operations 

 

Transfer of control operation Meaning 
  

BRANCH-IF-CONDITION Transfer of control to a new address if condition is true 

JUMP Unconditional transfer of control 

CALL Transfer of control to a subroutine 

RETURN Transfer of control to the caller routine 
  

 

 

latter scheme is called memory-mapped Input/Output. Among the 

advantages of memory-mapped I/O is the ability to execute a number 

of memory-dedicated instructions on the registers in the I/O devices 

in addition to the elimination of the need for dedicated I/O 

instructions. Its main disadvantage is the need to dedicate part of the 

memory address space for I/O devices. 

 

 

CHAPTER 3 

Processing Unit Design 

In this chapter, we focus our attention on the main component of any 

computer system, the central processing unit (CPU). The primary 

function of the CPU is to execute a set of instructions stored in the 

computer’s memory. A simple CPU consists of a set of registers, an 

arithmetic logic unit (ALU), and a control unit (CU). In what 

follows, the reader will be introduced to the organization and main 

operations of the CPU. 

 

CPU BASICS 

A typical CPU has three major components: (1) register set, (2) 

arithmetic logic unit (ALU), and (3) control unit (CU). The register 

set differs from one computer architecture to another. It is usually a 

combination of general-purpose and special-purpose registers. 

General-purpose registers are used for any purpose, hence the name 

general purpose.  
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Special-purpose registers have specific functions within the CPU. For 

example, the program counter (PC) is a special-purpose register that 

is used to hold the address of the instruction to be executed next. 

Another example of special-purpose registers is the instruction 

register (IR), which is used to hold the instruction that is currently 

executed. The ALU provides the circuitry needed to perform the 

arithmetic, logical and shift operations demanded of the instruction 

set. In Chapter 4, we have covered a number of arithmetic operations 

and circuits used to support computation in an ALU. The control unit 

is the entity responsible for fetching the instruction to be executed 

from the main memory and decoding and then executing it. Figure 

5.1 shows the main components of the CPU and its interactions with 

the memory system and the input/ output devices. 

The CPU fetches instructions from memory, reads and writes data 

from and to memory, and transfers data from and to input/output 

devices.  

 

 

Memory System 

 

Instructions Data 

 

CPU 

 

 

ALU 

 

 

Control Unit 

 

Registers 

 

 

 

Input / Output 

 

Figure 5.1 Central processing unit main components and interactions with the memory and 

I/O 
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A typical and simple execution cycle can be summarized as follows: 

 The next instruction to be executed, whose address is obtained 

from the PC, is fetched from the memory and stored in the IR. 

 

 The instruction is decoded. 

 

 Operands are fetched from the memory and stored in CPU 

registers, if needed. 

 

 The instruction is executed. 

 

Results are transferred from CPU registers to the memory, if needed. 

 

The execution cycle is repeated as long as there are more instructions 

to execute. A check for pending interrupts is usually included in the 

cycle. Examples of interrupts include I/O device request, arithmetic 

overflow, or a page fault .When an interrupt request is encountered, a 

transfer to an interrupt handling routine takes place. Interrupt 

handling routines are programs that are invoked to collect the state of 

the currently executing program, correct the cause of the interrupt, 

and restore the state of the program. 

The actions of the CPU during an execution cycle are defined by 

micro-orders issued by the control unit. These micro-orders are 

individual control signals sent over dedicated control lines. For 

example, let us assume that we want to execute an instruction that 

moves the contents of register X to register Y. Let us also assume 

that both registers are connected to the data bus, D. The control unit 

will issue a control signal to tell register X to place its contents on the 

data bus D. After some delay, another control signal will be sent to 

tell register Y to read from data bus D. The activation of the control 

signals is determined using either hardwired control or 

microprogramming.  

 

REGISTER SET 

Registers are essentially extremely fast memory locations within the 

CPU that are used to create and store the results of CPU operations 

and other calculations.  
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Different computers have different register sets. They differ in the 

number of registers, register types, and the length of each register. 

They also differ in the usage of each register. General-purpose 

registers can be used for multiple purposes and assigned to a variety 

of functions by the programmer.  

Special-purpose registers are restricted to only specific functions. In 

some cases, some registers are used only to hold data and cannot be 

used in the calculations of operand addresses. The length of a data 

register must be long enough to hold values of most data types. Some 

machines allow two contiguous registers to hold double-length 

values. Address registers may be dedicated to a particular addressing 

mode or may be used as address general purpose. Address registers 

must be long enough to hold the largest address. The number of 

registers in a particular architecture affects the instruction set design. 

A very small number of registers may result in an increase in 

memory references. Another type of registers is used to hold 

processor status bits, or flags. These bits are set by the CPU as the 

result of the execution of an operation. The status bits can be tested at 

a later time as part of another operation. 

 

Memory Access Registers 

Two registers are essential in memory write and read operations: the 

memory data register (MDR) and memory address register (MAR). 

The MDR and MAR are used exclusively by the CPU and are not 

directly accessible to programmers. 

In order to perform a write operation into a specified memory 

location, the MDR and MAR are used as follows: 

The word to be stored into the memory location is first loaded by the 

CPU into MDR. 

 The address of the location into which the word is to be stored is 

loaded by the CPU into a MAR. 
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Instruction Fetching Registers 

Two main registers are involved in fetching an instruction for 

execution: the pro-gram counter (PC) and the instruction register 

(IR). The PC is the register that contains the address of the next 

instruction to be fetched. The fetched instruction is loaded in the IR 

for execution. After a successful instruction fetch, the PC is updated 

to point to the next instruction to be executed. In the case of a branch 

operation, the PC is updated to point to the branch target instruction 

after the branch is resolved, that is, the target address is known. 

 

Condition Registers 

Condition registers, or flags, are used to maintain status information. 

Some architectures contain a special program status word (PSW) 

register. The PSW contains bits that are set by the CPU to indicate 

the current status of an executing program. These indicators are 

typically for arithmetic operations, interrupts, memory protection 

information, or processor status. 

 

Special-Purpose Address Registers 

Index Register, in index addressing, the address of the operand is 

obtained by adding a constant to the content of a register, called the 

index register. The index register holds an address displacement. 

Index addressing is indicated in the instruction by including the name 

of the index register in parentheses and using the symbol X to 

indicate the constant to be added. 

Segment Pointers  support segmentation, the address issued by the 

processor should consist of a segment number (base) and a 

displacement (or an offset) within the segment. A segment register 

holds the address of the base of the segment. 

Stack Pointer is a data organization mechanism in which the last data 

item stored is the first data item retrieved. Two specific operations 

can be performed on a stack. These are the Push and the Pop 

operations. A specific register, called the stack pointer (SP), is used 

to indicate the stack location that can be addressed. In the stack push 

operation, the SP value is used to indicate the location (called the top 

of the stack). After storing (pushing) this value, the SP is 
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incremented (in some architectures, e.g. X86, the SP is decremented 

as the stack grows low in memory). 

 

DATAPATH 

The CPU can be divided into a data section and a control section. 

The data section, which is also called the datapath, contains the 

registers and the ALU. The datapath is capable of performing certain 

operations on data items. The control section is basically the control 

unit, which issues control signals to the datapath. Internal to the 

CPU, data move from one register to another and between ALU and 

registers. Internal data movements are performed via local buses, 

which may carry data, instructions, and addresses. Externally, data 

move from registers to memory and I/O devices, often by means of a 

system bus. Internal data movement among registers and between the 

ALU and registers may be carried out using different organizations 

including one-bus, two-bus, or three-bus organizations. Dedicated 

datapaths may also be used between components that transfer data 

between them-selves more frequently. For example, the contents of 

the PC are transferred to the MAR to fetch a new instruction at the 

beginning of each instruction cycle. Hence, a dedicated datapath 

from the PC to the MAR could be useful in speeding up this part of 

instruction execution. 

 

One-Bus Organization 

Using one bus, the CPU registers and the ALU use a single bus to 

move outgoing and incoming data. Since a bus can handle only a 

single data movement within one clock cycle, two-operand 

operations will need two cycles to fetch the operands for the ALU. 

Additional registers may also be needed to buffer data for the ALU. 

This bus organization is the simplest and least expensive, but it limits 

the amount of data transfer that can be done in the same clock cycle, 

which will slow down the overall performance. Figure 5.3 shows a 

one-bus datapath consisting of a set of general-purpose registers, a 

memory address register (MAR), a memory data register (MDR), an 

instruction register (IR), a program counter (PC), and an ALU. 
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Figure 5.3: One-bus datapath 

 

Two-Bus Organization 

Using two buses is a faster solution than the one-bus organization. In 

this case, general-purpose registers are connected to both buses. Data 

can be transferred from two different registers to the input point of 

the ALU at the same time. Therefore, a two-operand operation can 

fetch both operands in the same clock cycle. An additional buffer 

register may be needed to hold the output of the ALU when the two 

buses are busy carrying the two operands. Figure 5.4a shows a two-

bus organization. In some cases, one of the buses may be dedicated 

for moving data into registers (in-bus), while the other is dedicated 

for transferring data out of the registers (out-bus). In this case, the 

additional buffer register may be used, as one of the ALU inputs, to 

hold one of the operands. The ALU output can be connected directly 

to the in-bus, which will transfer the result into one of the registers. 

Figure 5.4b shows a two-bus organization with in-bus and out-bus. 
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Three-Bus Organization 

In a three-bus organization, two buses may be used as source buses 

while the third is used as destination. The source buses move data out 

of registers (out-bus), and 
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Figure 5.4 Two-bus organizations. (a) An Example of Two-Bus Datapath. (b) Another  
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Example of Two-Bus Datapath with in-bus and out-bus 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Three-bus datapath 

 

the destination bus may move data into a register (in-bus). Each of 

the two out-buses is connected to an ALU input point. The output of 

the ALU is connected directly to the in-bus. As can be expected, the 

more buses we have, the more data we can move within a single 

clock cycle. However, increasing the number of buses will also 

increase the complexity of the hardware. Figure 5.5 shows an 

example of a three-bus datapath. 

 

CPU Instruction Cycle 

The sequence of operations performed by the CPU during its 

execution of instructions is presented in Fig. 5.6. As long as there are 

instructions to execute, the next instruction is fetched from main 

memory. The instruction is executed based on the operation specified 

in the opcode field of the instruction. At the completion of the 

instruction execution, a test is made to determine whether an 

interrupt has occurred. An interrupt handling routine needs to be 

invoked in case of an interrupt. 
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Figure 5.6: CPU functions 

 

The basic actions during fetching an instruction, executing an 

instruction, or hand-ling an interrupt are defined by a sequence of 

micro-operations. A group of control signals must be enabled in a 

prescribed sequence to trigger the execution of a micro-operation. In 

this section, we show the micro-operations that implement instruction 

fetch, execution of simple arithmetic instructions, and interrupt 

handling. 

 

Fetch Instructions 

The sequence of events in fetching an instruction can be summarized 

as follows: 

 The contents of the PC are loaded into the MAR. 

 The value in the PC is incremented. (This operation can be done 

in parallel with a memory access.) 

 As a result of a memory read operation, the instruction is loaded 

into the MDR. 

 The contents of the MDR are loaded into the IR. 

 

Let us consider the one-bus datapath organization shown in Fig. 5.3. 

We will see that the fetch operation can be accomplished in three 

steps as shown in the table below, where t0 , t1 , t2 . Note that multiple 

operations separated by “;” imply that they are accomplished in 

parallel. 
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Step   Micro-operation 
   

t
0 MAR (PC); A(PC) 

t1 MDR  Mem[MAR]; PC(A) þ 4 

t
2 IR  (MDR) 

 

Using the three-bus datapath shown in Figure 5.5, the following table 

shows the steps needed. 

 

 

Step  Micro-operation 
   

t0 MAR (PC); PC(PC) þ 4 

t
1 MDR Mem[MAR] 

t
2 IR (MDR) 

 

 

Execute Simple Arithmetic Operation 

Add R1 , R2 , R0 This instruction adds the contents of source registers 

R1 and R2 , and stores the results in destination register R0 . This 

addition can be executed as follows: 

 The registers R0 , R1 , R2 , are extracted from the IR. 

 The contents of R1 and R2 are passed to the ALU for addition. 

 The output of the ALU is transferred to R0 . 

 

Using the one-bus datapath shown in Figure 5.3, this addition will 

take three steps as shown in the following table, where t0 , t1 , t2 . 

 

 

Step Micro-operation 
   

t0 A (R1) 

t1 B (R2) 

t
2 R0 (A) þ (B) 

 

 

Using the two-bus datapath shown in Figure 5.4a, this addition will 

take two steps as shown in the following table, where t0 , t1 . 
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Step Micro-operation 
   

t0 A(R1) þ (R2) 

t1 R0(A)  

 

Using the two-bus datapath with in-bus and out-bus shown in Figure 

5.4b, this addition will take two steps as shown below, where t0 , t1 . 

 

 

Step Micro-operation 
   

t
0 A (R1) 

t1 R0 (A) þ (R2) 

 

Using the three-bus datapath shown in Figure 5.5, this addition will 

take only one step as shown in the following table. 

 

 

Step Micro-operation 
   

t
0 R0(R1) þ (R2) 

 

Add X, R0 This instruction adds the contents of memory location X 

to register R0 and stores the result in R0 . This addition can be 

executed as follows: 

 The memory location X is extracted from IR and loaded into 

MAR. 

 As a result of memory read operation, the contents of X are 

loaded into MDR. 

 The contents of MDR are added to the contents of R0 . 

Using the one-bus datapath shown in Figure 5.3, this addition will 

take five steps as shown below, where t0 , t1 , t2 , t3 , t4 . 
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Step Micro-operation 
   

t0 MAR X 

t1 MDR Mem[MAR] 

t
2 A (R0) 

t
3 B (MDR) 

t
4 R0 (A) þ (B) 

 

Using the two-bus datapath shown in Figure 5.4a, this addition will 

take four steps as shown below, where t0 , t1 , t2 , t3. 

 

 

Step Micro-operation 
    

t0 MAR X 

t1 MDR Mem[MAR] 

t
2 A (R0) þ (MDR) 

t3 R0 (A)  

 

Using the two-bus datapath with in-bus and out-bus shown in Figure 

5.4b, this addition will take four steps as shown below, where t0 , t1 , 

t2 , t3 . 

 

 

Step Micro-operation 
   

t0 MAR X 

t1 MDR Mem[MAR] 

t
2 A  (R0) 

t
3 R0  (A) þ (MDR) 

 

Using the three-bus datapath shown in Figure 5.5, this addition will 

take three steps as shown below, where t0 , t1 , t2 . 

 

 

Step Micro-operation 
   

t
0 MAR X 

t1 MDR  Mem[MAR] 

t2 R0  R0 þ (MDR) 
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Interrupt Handling 

After the execution of an instruction, a test is performed to check for 

pending inter-rupts. If there is an interrupt request waiting, the 

following steps take place: 

 The contents of PC are loaded into MDR (to be saved). 

 The MAR is loaded with the address at which the PC contents 

are to be saved. 

 The PC is loaded with the address of the first instruction of the 

interrupt hand-ling routine. 

 

The contents of MDR (old value of the PC) are stored in 

memory. The following table shows the sequence of events, 

where t1 , t2 , t3 . 

 

 

Step   Micro-operation 
   

t1 MDR (PC) 

t2 MAR address1 (where to save old PC); 

 PC  address2 (interrupt handling routine) 

t3 Mem[MAR]  (MDR) 

 

 

Control Unit 

The control unit is the main component that directs the system 

operations by sending control signals to the datapath. These signals 

control the flow of data within the CPU and between the CPU and 

external units such as memory and I/O. Control buses generally carry 

signals between the control unit and other computer components in a 

clock-driven manner. The system clock produces a continuous 

sequence of pulses in a specified duration and frequency. A sequence 

of steps t0 , t1 , t2 , . . . , 
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Figure 5.7: Timing of control signals 

(t0 , t1 , t2 , 
. . .) are used to execute a certain instruction. The op-code 

field of a fetched instruction is decoded to provide the control signal 

generator with information about the instruction to be executed. Step 

information generated by a logic circuit module is used with other 

inputs to generate control signals. The signal generator can be 

specified simply by a set of Boolean equations for its output in terms 

of its inputs. Figure 5.7 shows a block diagram that describes how 

timing is used in generating control signals. 

There are mainly two different types of control units: micro-

programmed and hardwired. In micro-programmed control, the 

control signals associated with operations are stored in special 

memory units inaccessible by the programmer as control words. A 

control word is a microinstruction that specifies one or more micro-

operations. A sequence of microinstructions is called a 

microprogram, which is stored in a ROM or RAM called a control 

memory CM. 

In hardwired control, fixed logic circuits that correspond directly to 

the Boolean expressions are used to generate the control signals. 
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Clearly hardwired control is faster than micro-programmed control. 

However, hardwired control could be very expensive and 

complicated for complex systems. Hardwired control is more 

economical for small control units.  

It should also be noted that micro-programmed control could adapt 

easily to changes in the system design. We can easily add new 

instructions without changing hardware. Hardwired control will 

require a redesign of the entire systems in the case of any change. 

 

Hardwired Implementation 

In hardwired control, a direct implementation is accomplished using 

logic circuits. For each control line, one must find the Boolean 

expression in terms of the input to the control signal generator as 

shown in Figure 5.7. Let us explain the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9: Signals generated to execute Inst-x on one-bus datapath 

during time period t0, t1, t2 

 

implementation using a simple example. Assume that the instruction 

set of a machine has the three instructions: Inst-x, Inst-y, and Inst-z; 

and A, B, C, D, E, F, G, and H are control lines. The following table 

shows the control lines that should be activated for the three 

instructions at the three steps t0 , t1 , and t2 . 
Step Inst-x Inst-y Inst-z 
     

t0 D, B, E F, H, G E, H 

t1 C, A, H G D, A, C 
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t2 G, C B, C   
     

 

The Boolean expressions for control lines A, B, and C can be 

obtained as follows: 

A  

 

B  

 

C  

 

Figure 5.10 shows the logic circuits for these control lines. Boolean 

expressions for the rest of the control lines can be obtained in a 

similar way. Figure 5.11 shows the state diagram in the execution 

cycle of these instructions. 

 

Micro-programmed Control Unit 

The idea of micro-programmed control units was introduced by M. 

V. Wilkes in the early 1950s. Microprogramming was motivated by 

the desire to reduce the complexities involved with hardwired 

control. As we studied earlier, an instruction is 
   

 

A  

   

 

 

     C 

 

 

 

 

B 

 

 

 

t2 

 

Figure 5.10 Logic circuits for control lines A, B, and C 
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Figure 5.11xecution state diagram 

 

implemented using a set of micro-operations. Associated with each 

microoperation is a set of control lines that must be activated to carry 

out the corresponding micro-operation. The idea of micro-

programmed control is to store the control signals associated with the 

implementation of a certain instruction as a microprogram in a 

special memory called a control memory (CM). A microprogram 

consists of a sequence of microinstructions. A microinstruction is a 

vector of bits, where each bit is a control signal, condition code, or 

the address of the next microinstruction. Microinstructions are 

fetched from CM the same way program instructions are fetched 

from main memory (Fig. 5.12). 

When an instruction is fetched from memory, the op-code field of the 

instruc-tion will determine which microprogram is to be executed. In 

other words, the op-code is mapped to a microinstruction address in 

the control memory. The microinstruction processor uses that address 

     Decode    
 

Inst-x 

      

   Inst-y  Inst-z 
          

t
0 

  

t0 

  

t0 

  

D, B, E F, H, G E, H 

t1 

   

t1 

  

t1 

  

       

C, A, H G D, A, C 

t2 

   

t2 

     

        

G, C B, C    
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to fetch the first microinstruction in the microprogram. After fetching 

each microinstruction, the appropriate control lines will be enabled. 

Every control line that corresponds to a “1” bit should be turned on. 

Every control line that corresponds to a “0” bit should be left off. 

After completing the execution of one microinstruction, a new 

microinstruction will be fetched and executed. If the condition code 

bits indicate that a branch must be taken, the next microinstruction is 

specified in the address bits of the cur-rent microinstruction. 

Otherwise, the next microinstruction in the sequence will be fetched 

and executed. 

When an instruction is fetched from memory, the op-code field of the 

instruc-tion will determine which microprogram is to be executed. In 

other words, the op-code is mapped to a microinstruction address in 

the control memory. The microinstruction processor uses that address 

to fetch the first microinstruction in the microprogram. After fetching 

each microinstruction, the appropriate control lines will be enabled. 

Every control line that corresponds to a “1” bit should be turned on. 

Every control line that corresponds to a “0” bit should be left off. 

After completing the execution of one microinstruction, a new 

microinstruction will be fetched and executed. If the condition code 

bits indicate that a branch must be taken, the next microinstruction is 

specified in the address bits of the cur-rent microinstruction. 

Otherwise, the next microinstruction in the sequence will be fetched 

and executed. 

The length of a microinstruction is determined based on the number 

of micro-operations specified in the microinstructions, the way the 

control bits will be interpreted, and the way the address of the next 

microinstruction is obtained. A microinstruction may specify one or 

more micro-operations that will be activated simultaneously. The 

length of the microinstruction will increase as the number of parallel 

micro-operations per microinstruction increases. Furthermore, when 

each control bit in the microinstruction corresponds to exactly one 

control line, the length of microinstruction could get bigger. The 

length of a microinstruction could be reduced if control lines are 

coded in specific fields in the microinstruction. Decoders will be 

needed to map each field into the individual control lines. Clearly, 

using the decoders will reduce the number of control lines that can be 
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activated simultaneously. There is a tradeoff between the length of 

the microinstructions and the amount of parallelism. It is important 

that we reduce the length of microinstructions to reduce the cost and 

access time of the control memory. It may also be desirable that more 

micro-operations be performed in parallel and more control lines can 

be activated simultaneously. 

 

 

 

 

 

 

Figure 5.12 Fetching microinstructions (control words) 

 

Horizontal Versus Vertical Microinstructions Microinstructions can 

be classified as horizontal or vertical. Individual bits in horizontal 

microinstructions correspond to individual control lines. Horizontal 

microinstructions are long and allow maximum parallelism since 

each bit controls a single control line. In vertical microinstructions, 

control lines are coded into specific fields within a microinstruction. 

Decoders are needed to map a field of k bits to 2k possible com-

binations of control lines. For example, a 3-bit field in a 

microinstruction could be used to specify any one of eight possible 

lines. Because of the encoding, vertical microinstructions are much 

shorter than horizontal ones. Control lines encoded in the same field 

cannot be activated simultaneously. Therefore, vertical micro-

instructions allow only limited parallelism. It should be noted that no 

decoding is needed in horizontal microinstructions while decoding is 

necessary in the vertical case. 

 

Example 3 Consider the three-bus datapath shown in Figure 5.5. In 

addition to the PC, IR, MAR, and MDR, assume that there are 16 

general-purpose registers numbered R0 – R15 . Also, assume that the 

ALU supports eight functions (add, sub-tract, multiply, divide, AND, 

OR, shift left, and shift right). Consider the add operation Add R1 , 

R2 , R0 , which adds the contents of source registers R1 , R2 , and 

        

Control   Control data 
 

External       Control Address   

Sequencer 
 

Memory Register 
 

input    
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store the results in destination register R0 . In this example, we will 

study the format of the microinstruction under horizontal 

organization. 

We will use horizontal microinstructions, in which there is a control 

bit for each control line.  

 

The format of the microinstruction should have control bits for the following: 

 ALU operations 

 

 Registers that output to out-bus1 (source 1) 

 

 Registers that output to out-bus2 (source 2) 

 

 Registers that input from in-bus (destination) 

 

 Other operations that are not shown here 

 

The following table shows the number of bits needed for ALU, 

Source 1, Source 2, and destination: 

 

 

Purpose Number of bits Explanations 
   

ALU 8 bits 8 functions 

Source 1 20 bits 16 general-purpose registers þ 4 special- 

  purpose registers 

Source 2 16 bits 16 general-purpose registers 

Destination 20 bits 16 general-purpose registers þ 4 special- 

  purpose registers 
   

 

 

5.13 is the microinstruction for Add R1 , R2 , R0 on the three-bus datapath 

 

 

 

 

 

 

Figure 5.13: Microinstruction for Add R1, R2, R0 
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CHAPTE 4 

Memory System Design 

 

Memory Hierarchy 

A typical memory hierarchy starts with a small, expensive, and 

relatively fast unit, called the cache, followed by a larger, less 

expensive, and relatively slow main memory unit. Cache and main 

memory are built using solid-state semiconductor material (typically 

CMOS transistors). It is customary to call the fast memory level the 

primary memory. The solid-state memory is followed by larger, less 

expensive, and far slower magnetic memories that consist typically 

of the (hard) disk and the tape. It is customary to call the disk the 

secondary memory, while the tape is conventionally called the 

tertiary memory. The objective behind designing a memory hierarchy 

is to have a memory system that performs as if it consists entirely of 

the fastest unit and whose cost is dominated by the cost of the 

slowest unit. 

The memory hierarchy can be characterized by a number of 

parameters. Among these parameters are the access type, capacity, 

cycle time, latency, bandwidth, and cost. The term access refers to 

the action that physically takes place during a read or write oper-

ation. The capacity of a memory level is usually measured in bytes. 

The cycle time is defined as the time elapsed from the start of a read 

operation to the start of a subsequent read. The latency is defined as 

the time interval between the request for information and the access 

to the first bit of that information. The bandwidth provides a measure 

of the number of bits per second that can be accessed. The cost of a 

memory level is usually specified as dollars per megabytes. Figure 

6.1 depicts a typical memory hierarchy. Table 6.1 provides typical 

values of the memory hierarchy parameters. 

The term random access refers to the fact that any access to any 

memory location takes the same fixed amount of time regardless of 

the actual memory location and/or the sequence of accesses that takes 

place. For example, if a write operation to memory location 100 takes 

15 ns and if this operation is followed by a read operation to memory 

location 3000, then the latter operation will also take 15 ns.  
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This is to be compared to sequential access in which if access to 

location 100 takes 500 ns, and if a consecutive access to location 101 

takes 505 ns, then it is expected that an access to location 300 may 

take 1500 ns. This is because the memory has to cycle through 

locations 100 to 300, with each location requiring 5 ns. 

The effectiveness of a memory hierarchy depends on the principle of 

moving information into the fast memory infrequently and accessing 

it many times before replacing it with new information. This 

principle is possible due to a phenomenon called locality of 

reference; that is, within a given period of time, programs tend to 

reference a relatively confined area of memory repeatedly. There 

exist two forms of locality: spatial and temporal locality.  Spatial 

locality refers to the 
 

 

 

   CPU Registers   

   Cache 

Latency 
 

     

   Main Memory Bandwidth 
     

  Secondary Storage (Disk)   

Speed   
TertiaryStorage (Tape) 

  
Cost per bit 

    

      

 
 

 
Capacity (megabytes) 

   
     

       

         

 

 

Figure 6.1 Typical memory hierarchy 
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phenomenon that when a given address has been referenced, it is 

most likely that addresses near it will be referenced within a short 

period of time, for example, consecutive instructions in a straightline 

program. Temporal locality, on the other hand, refers to the 

phenomenon that once a particular memory item has been referenced, 

it is most likely that it will be referenced next, for example, an 

instruction in a program loop. 

The sequence of events that takes place when the processor makes a 

request for an item is as follows. First, the item is sought in the first 

memory level of the memory hierarchy. The probability of finding 

the requested item in the first level is called the hit ratio, h1. The 

probability of not finding (missing) the requested item in the first 

level of the memory hierarchy is called the miss ratio, (1 2 h1). When 

the requested item causes a “miss,” it is sought in the next subsequent 

memory level. The probability of finding the requested item in the 

second memory level, the hit ratio of the second level, is h2. The miss 

ratio of the second memory level is (1 h2). The process is repeated 

until the item is found. Upon finding the requested item, it is brought 

and sent to the processor. 

In a memory hierarchy that consists of three levels, the average 

memory access time can be expressed as follows: 

 

 

 

 

 

       

TABLE 6.1  Memory Hierarchy Parameters       
        

 Access type  Capacity  Latency Bandwidth Cost/MB 
         

CPU registers Random 64 – 1024 bytes 1 – 10 ns System clock  High 

      rate   

Cache memory Random 8 – 512 KB 15 – 20 ns 10 – 20 MB/s  $500 

Main memory Random 16 – 512 MB 30 – 50 ns 1 – 2 MB/s  $20 – 50 

Disk memory Direct 1 – 20 GB 10 – 30 ms 1 – 2 MB/s  $0.25 

Tape memory Sequential 1 – 20 TB 30 – 10,000 ms 1 – 2 MB/s  $0.025 
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The average access time of a memory level is defined as the time 

required to access one word in that level. In this equation, t1, t2, t3 

represent, respectively, the access times of the three levels. 

 

Cache Memory 

Cache memory owes its introduction to Wilkes back in 1965. At that 

time, Wilkes distinguished between two types of main memory: The 

conventional and the slave memory.  

In Wilkes terminology, a slave memory is a second level of 

unconventional high-speed memory, which nowadays corresponds to 

what is called cache memory (the term cache means a safe place for 

hiding or storing things). 

The idea behind using a cache as the first level of the memory 

hierarchy is to keep the information expected to be used more 

frequently by the CPU in the cache 

(a small high-speed memory that is near the CPU). The end result is 

that at any given time some active portion of the main memory is 

duplicated in the cache. Therefore, when the processor makes a 

request for a memory reference, the request is first sought in the 

cache. If the request corresponds to an element that is currently resid-

ing in the cache, we call that a cache hit. On the other hand, if the 

request corre-sponds to an element that is not currently in the cache, 

we call that a cache miss. A cache hit ratio, hc, is defined as the 

probability of finding the requested element in the cache. A cache 

miss ratio (1 hc) is defined as the probability of not finding the 

requested element in the cache. 

In the case that the requested element is not found in the cache, then 

it has to be brought from a subsequent memory level in the memory 

hierarchy. Assuming that the element exists in the next memory 

level, that is, the main memory, then it has to be brought and placed 

in the cache. In expectation that the next requested element will be 

residing in the neighboring locality of the current requested element 

(spatial locality), then upon a cache miss what is actually brought to 

the main memory is a block of elements that contains the requested 

element. The advantage of transferring a block from the main 

memory to the cache will be most visible if it could be possible to 

transfer such a block using one main memory access time.  
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Such a possibility could be achieved by increasing the rate at which 

information can be transferred between the main memory and the 

cache. One possible technique that is used to increase the bandwidth 

is memory interleaving. To achieve best results, we can assume that 

the block brought from the main memory to the cache, upon a cache 

miss, consists of elements that are stored in different memory 

modules, that is, whereby consecutive memory addresses are stored 

in successive memory modules. Figure 6.2 illustrates the simple case 

of a main memory consisting of eight memory modules. It is 

assumed in this case that the block consists of 8 bytes. 

Having introduced the basic idea leading to the use of a cache 

memory, we would like to assess the impact of temporal and spatial 

locality on the performance of the memory hierarchy. In order to 

make such an assessment, we will limit our 
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Figure 6.2 Memory interleaving using eight modules 
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deliberation to the simple case of a hierarchy consisting only of two 

levels, that is, the cache and the main memory. We assume that the 

main memory access time is tm and the cache access time is tc. We 

will measure the impact of locality in terms of the average access 

time, defined as the average time required to access an element (a 

word) requested by the processor in such a two-level hierarchy. 

 

Impact of Temporal Locality 

In this case, we assume that instructions in program loops, which are 

executed many times, for example, n times, once loaded into the 

cache, are used more than once before they are replaced by new 

instructions. The average access time, tav, is given by 

 

 

 

 

 

In deriving the above expression, it was assumed that the requested 

memory element has created a cache miss, thus leading to the 

transfer of a main memory block in time tm. Following that, n 

accesses were made to the same requested element, each taking tc. 

The above expression reveals that as the number of repeated 

accesses, n, increases, the average access time decreases, a desirable 

feature of the memory hierarchy. 

 

Impact of Spatial Locality 

In this case, it is assumed that the size of the block transferred from 

the main memory to the cache, upon a cache miss, is m elements. We 

also assume that due to spatial locality, all m elements were 

requested, one at a time, by the processor. Based on these 

assumptions, the average access time, tav, is given by 
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In deriving the above expression, it was assumed that the requested 

memory element has created a cache miss, thus leading to the 

transfer of a main memory block, con-sisting of m elements, in time 

tm. Following that, m accesses, each for one of the elements 

constituting the block, were made. The above expression reveals that 

as the number of elements in a block, m, increases, the average 

access time decreases, a desirable feature of the memory hierarchy. 

 

Cache Memory Organization 

There are three main different organization techniques used for cache 

memory. The three techniques are discussed below. These techniques 

differ in two main aspects: 

 

 The criterion used to place, in the cache, an incoming block from 

the main memory. 

 

 The criterion used to replace a cache block by an incoming block 

(on cache full). 

 

Direct Mapping This is the simplest among the three techniques. Its 

simplicity stems from the fact that it places an incoming main 

memory block into a specific fixed cache block location. The 

placement is done based on a fixed relation between the incoming 

block number, i, the cache block number, j, and the number of cache 

blocks, N: 
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CHAPTER 5 

Input–Output Design and Organization 

 

Having considered the fundamental concepts related to instruction set 

design, assembly language programming, processor design, and 

memory design, we now turn our attention to the issues related to 

input – output (I/O) design and organization. It should be emphasized 

at the outset that I/O plays a crucial role in any modern computer 

system. Therefore, a clear understanding and appreciation of the 

fundamentals of I/O operations, devices, and interfaces are of great 

importance. 

Input – output (I/O) devices vary substantially in their characteristics. 

One distinguishing factor among input devices (and also among 

output devices) is their data processing rate, defined as the average 

number of characters that can be processed by a device per second. 

For example, while the data processing rate of an input device such 

as the keyboard is about 10 characters (bytes)/second, a scanner can 

send data at a rate of about 200,000 characters/second. Similarly, 

while a laser printer can output data at a rate of about100,000 

characters/second, a graphic display can output data at a rate of about 

30,000,000 characters/second. 

Striking a character on the keyboard of a computer will cause a 

character (in the form of an ASCII code) to be sent to the computer. 

The amount of time passed before the next character is sent to the 

computer will depend on the skill of the user and even sometimes on 

his/her speed of thinking. It is often the case that the user knows what 

he/she wants to input, but sometimes they need to think before 

touching the next button on the keyboard. Therefore, input from a 

keyboard is slow and burst in nature and it will be a waste of time for 

the computer to spend its valuable time waiting for input from slow 

input devices. A mechanism is therefore needed whereby a device 

will have to interrupt the processor asking for attention whenever it is 

ready. This is called interrupt-driven communication between the 

computer and I/O devices (see Section 8.3). 

Consider the case of a disk. A typical disk should be capable of 

transferring data at rates exceeding several million bytes/second.  
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It would be a waste of time to transfer data byte by byte or even word 

by word. Therefore, it is always the case that data is transferred in the 

form of blocks, that is, entire programs. It is also necessary to 

provide a mechanism that allows a disk to transfer this huge volume 

of data without the intervention of the CPU. This will allow the CPU 

to perform other useful operation(s) while a huge amount of data is 

being transferred between the disk and the memory.  

 

Basic Concepts 

Figure 8.1 shows a simple arrangement for connecting the processor 

and the memory in a given computer system to an input device, for 

example, a keyboard and an output device such as a graphic display. 

A single bus consisting of the required address, data, and control 

lines is used to connect the system’s components in Figure 8.1. 

We are here concerned with the way the processor and the I/O 

devices exchange data. It has been indicated in the introduction part 

that there exists a big difference in the rate at which a processor can 

process information and those of input and output devices. One 

simple way to accommodate this speed difference is to have the input 

device, for example, a keyboard, deposit the character struck by the 

user in a register (input register), which indicates the avail-ability of 

that character to the processor. When the input character has been 

taken by the processor, this will be indicated to the input device in 

order to proceed and input the next character, and so on. Similarly, 

when the processor has a character to output (display), it deposits it 

in a specific register dedicated for communication with the graphic 

display (output register). When the character has been taken by the 

graphic display, this will be indicated to the processor such that it can 

proceed and output the next character, and so on. This simple way of 

communication between the processor and I/O devices, called I/O 

protocol, requires the availability of the input and output registers. In 

a typical computer system, there is a number of input registers, each 

belonging to a specific input device. There is also a number of output 

registers, 
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Figure: 8.1 A single bus system 

 

 

each belonging to a specific output device. In addition, a mechanism 

according to which the processor can address those input and output 

registers must be adopted. More than one arrangement exists to 

satisfy the abovementioned requirements. Among these, two 

particular methods are explained below. 

 

In the first arrangement, I/O devices are assigned particular 

addresses, isolated from the address space assigned to the memory. 

The execution of an input instruc-tion at an input device address will 

cause the character stored in the input register of that device to be 

transferred to a specific register in the CPU. Similarly, the execution 

of an output instruction at an output device address will cause the 

char-acter stored in a specific register in the CPU to be transferred to 

the output register of that output device. This arrangement, called 

shared I/O, is shown schematically in Figure 8.2. In this case, the 

address and data lines from the CPU can be shared between the 

memory and the I/O devices. A separate control line will have to be 

used. This is because of the need for executing input and output 

instructions. In a typical computer system, there exists more than one 

input and more than one output device. Therefore, there is a need to 

have address decoder circuitry for device identification. There is also 

a need for status registers for each input and output device. The status 

of an input device, whether it is ready to send data to the processor, 
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should be stored in the status register of that device. Similarly, the 

status of an output device, whether it is ready to receive data from the 

processor, should be stored in the status register of that device. Input 

(output) registers, status registers, and address decoder circuitry 

represent the main components of an I/O interface (module). 
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Figure 8.2 Shared I/O arrangement 

 

 

 

The main advantage of the shared I/O arrangement is the separation 

between the memory address space and that of the I/O devices. Its 

main disadvantage is the need to have special input and output 

instructions in the processor instruction set. The shared I/O 

arrangement is mostly adopted by Intel. 

The second possible I/O arrangement is to deal with input and output 

registers as if they are regular memory locations. In this case, a read 

operation from the address corresponding to the input register of an 

input device, for example, Read Device 6, is equivalent to 

performing an input operation from the input register in Device #6. 

Similarly, a write operation to the address corresponding to the 

 

 

 

Processor 

 

 

Memory  
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output register of an output device, for example, Write Device 9, is 

equivalent to performing an output operation into the output register 

in Device #9. This arrangement is called memory-mapped I/O. It is 

shown in Figure 8.3. 

The main advantage of the memory-mapped I/O is the use of the read 

and write instructions of the processor to perform the input and 

output operations, respectively. It eliminates the need for introducing 

special I/O instructions. The main disadvantage of the memory-

mapped I/O is the need to reserve a certain part of the memory 

address space for addressing I/O devices, that is, a reduction in the 

available memory address space. The memory-mapped I/O has been 

mostly adopted by Motorola. 
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Interrupt-Driven I/O 

It is often necessary to have the normal flow of a program 

interrupted, for example, to react to abnormal events, such as power 

failure. An interrupt can also be used to acknowledge the completion 

of a particular course of action, such as a printer indicating to the 

computer that it has completed printing the character(s) in its input 

register and that it is ready to receive other character(s). An interrupt 

can also be used in time-sharing systems to allocate CPU time among 

different programs. The instruction sets of modern CPUs often 

include instruction(s) that mimic the actions of the hardware 

interrupts. 

When the CPU is interrupted, it is required to discontinue its current 

activity, attend to the interrupting condition (serve the interrupt), and 

then resume its activity from wherever it stopped. Discontinuity of 

the processor’s current activity requires finishing executing the 

current instruction, saving the processor status (mostly in the form of 

pushing register values onto a stack), and transferring control (jump) 

to what is called the interrupt service routine (ISR). The service 

offered to an interrupt will depend on the source of the interrupt. For 

example, if the interrupt is due to power failure, then the action taken 

will be to save the values of all processor registers and pointers such 

that resumption of correct operation can be guaranteed upon power 

return. In the case of an I/O interrupt, serving an interrupt means to 

perform the required data transfer. Upon finishing serving an 

interrupt, the processor should restore the original status by popping 

the relevant values from the stack. Once the processor returns to the 

normal state, it can enable sources of interrupt again. 

One important point that was overlooked in the above scenario is the 

issue of serving multiple interrupts, for example, the occurrence of 

yet another interrupt while the processor is currently serving an 

interrupt. Response to the new interrupt will depend upon the priority 

of the newly arrived interrupt with respect to that of the interrupt 

being currently served. If the newly arrived interrupt has priority less 

than or equal to that of the currently served one, then it can wait until 

the processor finishes serving the current interrupt. If, on the other 

hand, the newly arrived interrupt has priority higher than that of the 

currently served interrupt, for example, power failure interrupt 
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occurring while serving an I/O interrupt, then the processor will have 

to push its status onto the stack and serve the higher priority 

interrupt. Correct handling of multiple interrupts in terms of storing 

and restoring the correct processor status is guaranteed due to the 

way the push and pop operations are performed.  

For example, to serve the first interrupt, STATUS 1 will be pushed 

onto the stack. Upon receiving the second interrupt, STATUS 2 will 

be pushed onto the stack. Upon serving the second interrupt, 

STATUS 2 will be popped out of the stack and upon serving the first 

interrupt, STATUS 1 will be popped out of the stack. 

It is possible to have the interrupting device identify itself to the 

processor by sending a code following the interrupt request. The code 

sent by a given I/O device can represent its I/O address or the 

memory address location of the start of the ISR for that device. This 

scheme is called vectored interrupt. 

 

Interrupt Hardware 

In the above discussion, we have assumed that the processor has 

recognized the occurrence of an interrupt before proceeding to serve 

it. Computers are provided with interrupt hardware capability in the 

form of specialized interrupt lines to the processor. These lines are 

used to send interrupt signals to the processor. In the case of I/O, 

there exists more than one I/O device. The processor should be pro-

vided with a mechanism that enables it to handle simultaneous 

interrupt requests and to recognize the interrupting device. Two basic 

schemes can be implemented to achieve this task. The first scheme is 

called daisy chain bus arbitration (DCBA) and the second is called 

independent source bus arbitration (ISBA). 

 

Interrupt in Operating Systems 

When an interrupt occurs, the operating system gains control. The 

operating system saves the state of the interrupted process, analyzes 

the interrupt, and passes control to the appropriate routine to handle 

the interrupt. There are several 
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Figure 8.6 Interrupt hardware schemes. (a) Daisy chain interrupt arrangement (b) 

Independent interrupt arrangement 

 

types of interrupts, including I/O interrupts. An I/O interrupt notifies 

the operating system that an I/O device has completed or suspended 

its operation and needs some service from the CPU. To process an 

interrupt, the context of the current process must be saved and the 

interrupt handling routine must be invoked. This process is called 

context switching. A process context has two parts: processor context 

and memory context. The processor context is the state of the CPU’s 

registers including program counter (PC), program status words 

(PSWs), and other registers. The memory context is the state of the 

program’s memory including the program and data. The interrupt 

handler is a routine that processes each different type of interrupt. 

The operating system must provide programs with save area for their 

contexts. It also must provide an organized way for allocating and 

de-allocating memory for the interrupted process. When the interrupt 

handling routine finishes processing the interrupt, the CPU is 

dispatched to either the interrupted process, or to the highest priority 

ready process. This will depend on whether the interrupted process is 

preemptive or non-preemptive. If the process is non-preemptive, it 

gets the CPU again. First the con-text must be restored, then control 

is returned to the interrupts process. 
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Figure 8.7 Layered I/O software 

 

Figure 8.7 shows the layers of software involved in I/O operations. 

First, the pro-gram issues an I/O request via an I/O call. The request 

is passed through to the I/O device. When the device completes the 

I/O, an interrupt is sent and the interrupt handler is invoked. 

Eventually, control is relinquished back to the process that initiated 

the I/O. 

 

Direct Memory Access (DMA) 

The main idea of direct memory access (DMA) is to enable 

peripheral devices to cut out the “middle man” role of the CPU in 

data transfer. It allows peripheral devices to transfer data directly 

from and to memory without the intervention of the CPU. Having 

peripheral devices access memory directly would allow the CPU to 

do other work, which would lead to improved performance, 

especially in the cases of large transfers. 

The DMA controller is a piece of hardware that controls one or more 

peripheral devices. It allows devices to transfer data to or from the 

system’s memory without the help of the processor. In a typical 

DMA transfer, some event notifies the DMA controller that data 

needs to be transferred to or from memory. Both the DMA and CPU 

use memory bus and only one or the other can use the memory at the 

same time. The DMA controller then sends a request to the CPU 

asking its permission to use the bus. The CPU returns an 

acknowledgment to the DMA controller granting it bus access. The 
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DMA can now take control of the bus to independently conduct 

memory transfer. When the transfer is complete the DMA 

relinquishes its control of the bus to the CPU. Processors that support 

DMA provide one or more input signals that the bus requester can 

assert to gain control of the bus and one or more output signals that 

the CPU asserts to indicate it has relinquished the bus. Figure 8.10 

shows how the DMA controller shares the CPU’s memory bus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 8.1:DMA controller shares the CPU’s memory bus 

 

Direct memory access controllers require initialization by the CPU. Typical setup 

parameters include the address of the source area, the address of the destination 

area, the length of the block, and whether the DMA controller should generate a 

processor interrupt once the block transfer is complete. A DMA controller has an 

address register, a word count register, and a control register. The address register 

contains an address that specifies the memory location of the data to be transferred. 

It is typically possible to have the DMA controller automatically increment the 

address register after each word transfer, so that the next transfer will be from the 

next memory location. The word count register holds the number of words to be 

transferred. The word count is decremented by one after each word transfer. The 

control register specifies the transfer mode. 

Direct memory access data transfer can be performed in burst mode or single-cycle 

mode. 
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 In burst mode, the DMA controller keeps control of the bus until all the data has 

been transferred to (from) memory from (to) the peripheral device. This mode of 

transfer is needed for fast devices where data transfer cannot be stopped until the 

entire transfer is done. In single-cycle mode (cycle stealing), the DMA controller 

relinquishes the bus after each transfer of one data word. This minimizes the 

amount of time that the DMA controller keeps the CPU from controlling the bus, 

but it requires that the bus request/acknowledge sequence be performed for every 

single transfer. This overhead can result in a degradation of the performance. The 

single-cycle mode is preferred if the system cannot tolerate more than a few cycles 

of added interrupt latency or if the peripheral devices can buffer very large 

amounts of data, causing the DMA controller to tie up the bus for an excessive 

amount of time. 

 

The following steps summarize the DMA operations: 

 DMA controller initiates data transfer. 

 Data is moved (increasing the address in memory, and reducing the count of 

words to be moved). 

 When word count reaches zero, the DMA informs the CPU of the termination 

by means of an interrupt. 

 The CPU regains access to the memory bus. 

 

A DMA controller may have multiple channels. Each channel has 

associated with it an address register and a count register. To initiate 

a data transfer the device driver sets up the DMA channel’s address 

and count registers together with the direction of the data transfer, 

read or write. While the transfer is taking place, the CPU is free to do 

other things. When the transfer is complete, the CPU is interrupted. 

Direct memory access channels cannot be shared between device 

drivers. A device driver must be able to determine which DMA 

channel to use. Some devices have a fixed DMA channel, while 

others are more flexible, where the device driver can simply pick a 

free DMA channel to use. 

Linux tracks the usage of the DMA channels using a vector of 

dma_chan data structures (one per DMA channel). The dma_chan 

data structure contains just two fields, a pointer to a string describing 

the owner of the DMA channel and a flag indicating if the DMA 

channel is allocated or not. 

 

 

BUSES 
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A bus in computer terminology represents a physical connection used 

to carry a signal from one point to another. The signal carried by a 

bus may represent address, data, control signal, or power. Typically, 

a bus consists of a number of connections running together. Each 

connection is called a bus line. A bus line is normally identified by a 

number. Related groups of bus lines are usually identified by a name. 

For example, the group of bus lines 1 to 16 in a given computer 

system may be used to carry the address of memory locations, and 

therefore are identified as address lines. Depending on the signal 

carried, there exist at least four types of buses: address, data, control, 

and power buses. Data buses carry data, control buses carry control 

signals, and power buses carry the power-supply/ground voltage. The 

size (number of lines) of the address, data, and control bus varies 

from one system to another. Consider, for example, the bus 

connecting a CPU and memory in a given system, called the CPU 

bus. The size of the memory in that system is 512M-word and each 

word is 32 bits. In such system, the size of the address bus should be 

log2(512 220) ¼ 29 lines, the size of the data bus should be 32 lines, 

and at least one control line (R W) should exist in that system. 

In addition to carrying control signals, a control bus can carry timing 

signals. These are signals used to determine the exact timing for data 

transfer to and from a bus; that is, they determine when a given 

computer system component, such as the processor, memory, or I/O 

devices, can place data on the bus and when they can receive data 

from the bus. A bus can be synchronous if data transfer over the bus 

is controlled by a bus clock. The clock acts as the timing reference 

for all bus signals. A bus is asynchronous if data transfer over the bus 

is based on the avail-ability of the data and not on a clock signal. 

Data is transferred over an asynchronous bus using a technique called handshaking. 

The operations of synchronous and asynchronous buses are explained below. 

To understand the difference between synchronous and 

asynchronous, let us consider the case when a master such as a CPU 

or DMA is the source of data to be transferred to a slave such as an 

I/O device. The following is a sequence of events involving the 

master and slave: 

 

 Master: send request to use the bus 
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 Master: request is granted and bus is allocated to master 

 

 Master: place address/data on bus 

 

 Slave: slave is selected 

 

 Master: signal data transfer 

 

 Slave: take data 

 

 Master: free the bus 

 

 Synchronous Buses 

In synchronous buses, the steps of data transfer take place at fixed 

clock cycles. Everything is synchronized to bus clock and clock 

signals are made available to both master and slave. The bus clock is 

a square wave signal. A cycle starts at one rising edge of the clock 

and ends at the next rising edge, which is the beginning of the next 

cycle. A transfer may take multiple bus cycles depending on the 

speed parameters of the bus and the two ends of the transfer. 

One scenario would be that on the first clock cycle, the master puts 

an address on the address bus, puts data on the data bus, and asserts 

the appropriate control lines. Slave recognizes its address on the 

address bus on the first cycle and reads the new value from the bus in 

the second cycle. 

Synchronous buses are simple and easily implemented. However, 

when connecting devices with varying speeds to a synchronous bus, 

the slowest device will deter-mine the speed of the bus. Also, the 

synchronous bus length could be limited to avoid clock-skewing 

problems. 

 

 Asynchronous Buses 

There are no fixed clock cycles in asynchronous buses. Handshaking 

is used instead. Figure 8.11 shows the handshaking protocol. The 

master asserts the data-ready line 
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Figure 8.11 Asynchronous bus timing using handshaking protocol 

 

 

( point 1 in the figure) until it sees a data-accept signal. When the 

slave sees a data-ready signal, it will assert the data-accept line (point 

2 in the figure). The rising of the data-accept line will trigger the 

falling of the data-ready line and the removal of data from the bus. 

The falling of the data-ready line (point 3 in the figure) will trigger 

the falling of the data-accept line (point 4 in the figure). This 

handshaking, which is called fully interlocked, is repeated until the 

data is completely transferred. Asynchronous bus is appropriate for 

different speed devices. 
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 INPUT –OUTPUT INTERFACES 

An interface is a data path between two separate devices in a computer system. Inter-

face to buses can be classified based on the number of bits that are transmitted at a 

given time to serial versus parallel ports. In a serial port, only 1 bit of data is trans-

ferred at a time. Mice and modems are usually connected to serial ports. A parallel port 

allows more than 1 bit of data to be processed at once. Printers are the most common 

peripheral devices connected to parallel ports. Table 8.4 shows a summary of the 

variety of buses and interfaces used in personal computers. 

 

TABLE 8.4 Descriptions of Buses and Interfaces Used in Personal Computers 

 

 

Bus/Interface Description 
  

PS/2 A type of port (or interface) that can be used to connect mice and 

 keyboards to the computer. The PS/2 port is sometimes called the 

 mouse port. 

Industry standard ISA was originally an 8-bit bus and later expanded to a 16-bit bus in 

architecture (ISA) 1984. In 1993, Intel and Microsoft introduced a plug and play 

 ISA bus that allowed the computer to automatically detect and set 

 up computer ISA peripherals such as a modem or sound card. 

Extended industry EISA is an enhanced form of ISA, which allows for 32-bit data 

standard transfers, while maintaining support for 8- and 16-bit expansion 

architecture boards. However, its bus speed, like ISA, is only 8 MHz. EISA is 

(EISA) not widely used, due to its high cost and complicated nature. 

Micro channel MCA was introduced by IBM in 1987. It offered several additional 

architecture features over the ISA such as a 32-bit bus, automatically 

(MCA) configured cards and bus mastering for greater efficiency. It is 

 slightly superior to EISA, but not many expansion boards were 

 ever made to fit MCA specifications. 

VESA (Video The VESA, a nonprofit organization founded by NEC, released the 

electronics VLB in 1992. It is a 32-bit bus that had direct access to the system 

standards memory at the speed of the processor, commonly the 486 CPU 

association) local (33/40 MHz). VLB 2.0 was later released in 1994 and had a 

bus (VLB) 64-bit bus and a bus speed of 50 MHz. 

Peripheral PCI was introduced by Intel in 1992, revised in 1993 to version 2.0, 

component and later revised in 1995 to PCI 2.1. It is a 32-bit bus that is also 

interconnect (PCI) available as a 64-bit bus today. Many modern expansion boards 

 are connected to PCI slots. 

Advanced graphic AGP was introduced by Intel in 1997. AGP is a 32-bit bus designed for 

port (AGP) the high demands of 3D graphics. AGP has a direct line to memory, 

 which allows 3D elements to be stored in the system memory 

 instead of the video memory. AGP is geared towards data-intensive 

 graphics cards, such as 3D accelerators; its design allows for data 

 throughput at rates of 266 MB/s. 
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TABLE 8.4 Continued 

 

 

Bus/Interface Description 
  

Universal serial bus USB is an external bus developed by Intel, Compaq, DEC, IBM, 

(USB) Microsoft, NEC and Northern Telcom. It was released in 1996 with 

 the Intel 430HX Triton II Mother Board. USB has the capability of 

 transferring 12 Mbps, supporting up to 127 devices. Many devices 

 can be connected to USB ports, which support plug and play. 

FireWire (IEEE FireWire is a type of external bus, which supports very fast transfer 

1394) rates: 400 Mbps. Because of this, FireWire is suitable for 

 connecting video devices, such as VCRs, to the computer. 

Small computer SCSI is a type of parallel interface that is commonly used for mass 

system interface storage devices. SCSI can transfer data at rates of 4 MB/s; in 

(SCSI) addition, there are several varieties of SCSI that support higher 

 speeds: Fast SCSI (10 MB/s), Ultra SCSI and Fast Wide SCSI 

 (20 MB/s), as well as Ultra Wide SCSI (40 MB/s). 

Integrated drive IDE is a commonly used interface for hard disk drives and 

electronics (IDE) CD-ROM drives. It is less expensive than SCSI, but offers 

 slightly less in terms of performance. 

Enhanced integrated EIDE is an improved version of IDE, which offers better 

drive electronics performance than standard SCSI. It offers transfer rates between 

(EIDE) 4 and 16.6 MB/s. 

PCI-X PCI-X is a high performance bus that is designed to meet the 

 increased I/O demands of technologies such as Fibre Channel, 

 Gigabit Ethernet, and Ultra3 SCSI. 

Communication and CNR was introduced by Intel in 2000. It is a specification that 

network riser supports audio, modem USB and local area networking interfaces 

(CNR) of core logic chipsets. 
  

 

 

SUMMARY 

One of the major features in a computer system is its ability to exchange data with other 

devices and to allow the user to interact with the system. This chapter focused on the 

I/O system and the way the processor and the I/O devices exchange data in a computer 

system. The chapter described three ways of organizing I/O: programmed I/O, 

interrupt-driven I/O, and DMA. In programmed I/O, the CPU handles the transfers, 

which take place between registers and the devices. In interrupt-driven I/O, CPU 

handles data transfers and an I/O module is running concurrently. In DMA, data are 

transferred between memory and I/O devices without intervention of the CPU. We also 

studied two methods for synchronization: polling and interrupts. In polling, the 

processor polls the device while waiting for I/O to complete. Clearly processor cycles 
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are wasted in this method. Using interrupts, processors are free to switch to other tasks 

during I/O. Devices assert interrupts when I/O is complete. Interrupts incurs some 

delay penalty. Two examples of interrupt handling were covered: 80 86 family and 

ARM. The chapter also covered buses and interfaces. A wide variety of interfaces 

and buses used in personal computers are summarized. 
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CHAPTER 6 

Pipelining Design Techniques 

 

There exist two basic techniques to increase the instruction execution rate of a 

processor. These are to increase the clock rate, thus decreasing the instruction 

execution time, or alternatively to increase the number of instructions that can be 

executed simultaneously. Pipelining and instruction-level parallelism are examples 

of the latter technique. Pipelining owes its origin to car assembly lines. The idea is 

to have more than one instruction being processed by the processor at the same 

time. Similar to the assembly line, the success of a pipeline depends upon dividing 

the execution of an instruction among a number of subunits (stages), each perform-

ing part of the required operations. A possible division is to consider instruction 

fetch (F), instruction decode (D), operand fetch (F), instruction execution (E), and 

store of results (S) as the subtasks needed for the execution of an instruction. In this 

case, it is possible to have up to five instructions in the pipeline at the same time, 

thus reducing instruction execution latency. In this Chapter, we discuss the basic 

concepts involved in designing instruction pipelines. Performance measures of a 

pipeline are introduced. The main issues contributing to instruction pipeline 

hazards are discussed and some possible solutions are introduced. In addition, we 

introduce the concept of arithmetic pipelining together with the problems involved 

in designing such a pipeline. Our coverage concludes with a review of a recent 

pipeline processor. 

 

 

GENERAL CONCEPTS 

Pipelining refers to the technique in which a given task is divided into a number of 

subtasks that need to be performed in sequence. Each subtask is performed by a 

given functional unit. The units are connected in a serial fashion and all of them 

operate simultaneously. The use of pipelining improves the performance compared 

to the traditional sequential execution of tasks. Figure 9.1 shows an illustration of 

the basic difference between executing four subtasks of a given instruction (in this 

case fetching F, decoding D, execution E, and writing the results W) using 

pipelining and sequential processing. 
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Figure 9.1 Pipelining versus sequential processing 

 

It is clear from the figure that the total time required to process three instructions 

(I1, I2, I3) is only six time units if four-stage pipelining is used as compared to 12 

time units if sequential processing is used. A possible saving of up to 50% in the 

execution time of these three instructions is obtained. In order to formulate some 

performance measures for the goodness of a pipeline in processing a series of tasks, 

a space time chart (called the Gantt’s chart) is used. The chart shows the suc-

cession of the subtasks in the pipe with respect to time. Figure 9.2 shows a Gantt’s 

chart. In this chart, the vertical axis represents the subunits (four in this case) and 

the horizontal axis represents time (measured in terms of the time unit required for 

each unit to perform its task). In developing the Gantt’s chart, we assume that the 

time (T) taken by each subunit to perform its task is the same; we call this the unit 

time. 

 

As can be seen from the figure, 13 time units are needed to finish executing 10 

instructions (I1 to I10). This is to be compared to 40 time units if sequential proces-

sing is used (ten instructions each requiring four time units). 

 

In the following analysis, we provide three performance measures for the good-

ness of a pipeline. These are the Speed-up S(n), Throughput U(n), and Efficiency 

E(n). It should be noted that in this analysis we assume that the unit time T ¼ t 

units. 

 

 Speed-up S(n) Consider the execution of m tasks (instructions) using n-stages 

(units) pipeline. As can be seen, n þ m 1 time units are required 
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Figure 9.2 The space – time chart (Gantt chart) 

 

INSTRUCTION PIPELINE 

The simple analysis made in Section 9.1 ignores an important aspect that can affect 

the performance of a pipeline, that is, pipeline stall. A pipeline operation is said to 

have been stalled if one unit (stage) requires more time to perform its function, thus 

forcing other stages to become idle. Consider, for example, the case of an 

instruction fetch that incurs a cache miss. Assume also that a cache miss requires 

three extra time units. Figure 9.3 illustrates the effect of having instruction I2 

incurring a cache miss (assuming the execution of ten instructions I1 to I10). 
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Figure 9.3 Effect of a cache miss on the pipeline 
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The figure shows that due to the extra time units needed for instruction I2 to be 

fetched, the pipeline stalls, that is, fetching of instruction I3 and subsequent 

instructions are delayed. Such situations create what is known as pipeline bubble (or 

pipe-line hazards). The creation of a pipeline bubble leads to wasted unit times, thus 

leading to an overall increase in the number of time units needed to finish executing 

a given number of instructions. The number of time units needed to execute the 10 

instructions shown in Figure 9.3 is now 16 time units, compared to 13 time units if 

there were no cache misses. 

 

Pipeline hazards can take place for a number of other reasons. Among these are 

instruction dependency and data dependency. These are explained below. 

 

 

Methods Used to Prevent Fetching the Wrong Instruction or Operand 

Use of NOP (No Operation) This method can be used in order to prevent the fetching 

of the wrong instruction, in case of instruction dependency, or fetching the wrong 

operand, in case of data dependency. Recall Example 1. In that example, the 

execution of a sequence of ten instructions I1 –I10 on a pipeline consisting of four 

pipeline stages: IF, ID, IE, and IS were considered. In order to show the execution of 

these instructions in the pipeline, we have assumed that when the branch instruction 

is fetched, the pipeline stalls until the result of executing the branch instruction is 

stored. This assumption was needed in order to prevent fetching the wrong 

instruction after fetching the branch instruction. In real-life situations, a mechanism 

is needed to guarantee fetching the appropriate instruction at the appropriate time. 

Insertion of “NOP” instructions will help carrying out this task. A “NOP” is an 

instruction that has no effect on the status of the processor. 
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CHAPTER 7 

Reduced Instruction Set Computers (RISCs) 

 

RISC/CISC EVOLUTION CYCLE 

The term RISCs stands for Reduced Instruction Set Computers. It was originally 

introduced as a notion to mean architectures that can execute as fast as one 

instruction per clock cycle. RISC started as a notion in the mid-1970s and has even-

tually led to the development of the first RISC machine, the IBM 801 minicomputer. 

The launching of the RISC notion announces the start of a new paradigm in the 

design of computer architectures. This paradigm promotes simplicity in computer 

architecture design. In particular, it calls for going back to basics rather than 

providing extra hardware support for high-level languages. This paradigm shift 

relates to what is known as the semantic gap, a measure of the difference between 

the operations provided in the high-level languages (HLLs) and those provided in 

computer architectures. 

 

It is recognized that the wider the semantic gap, the larger the number of undesirable 

consequences. These include (a) execution inefficiency, (b) excessive machine pro-gram 

size, and (c) increased compiler complexity. Because of these expected conse-quences, 

the conventional response of computer architects has been to add layers of complexity to 

newer architectures.  

These include increasing the number and complexity of instructions together with 

increasing the number of addressing modes. The architectures resulting from the adoption 

of this “add more complexity” are now known as Complex Instruction Set Computers 

(CISCs). However, it soon became apparent that a complex instruction set has a number 

of disadvantages. These include a complex instruction decoding scheme, an increased 

size of the control unit, and increased logic delays. These drawbacks prompted a team of 

computer architects to adopt the principle of “less is actually more.” A number of studies 

were then conducted to investigate the impact of complexity on performance. These are 

discussed below. 

 

 

RISCs DESIGN PRINCIPLES 

A computer with the minimum number of instructions has the disadvantage that a large 

number of instructions will have to be executed in realizing even a simple function. This 

will result in a speed disadvantage. On the other hand, a computer with an inflated 

number of instructions has the disadvantage of complex decoding and hence a speed 

disadvantage. It is then natural to believe that a computer with a carefully selected 

reduced set of instructions should strike a balance between the above two design 

alternatives. The question then becomes what constitutes a carefully selected reduced set 

of instructions? In order to arrive at an answer to this question, it is necessary to conduct 

in-depth studies on a number of aspects of computation. These aspects should include (a) 

operations that are most frequently performed during execution of typical (benchmark) 

programs, (b) operations that are most time consuming, and (c) the type of operands that 

are most frequently used. 
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A number of early studies were conducted in order to find out the typical break-

down of operations that are performed in executing benchmark programs. The esti-

mated distribution of operations is shown in Table 10.1. 

 

A careful look at the estimated percentage of operations performed reveals that 

assignment statements, conditional branches, and procedure calls constitute about 

90% of the total operations performed, while other operations, however complex 

they may be, make up the remaining 10%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition to the above findings, studies on time – performance characteristics of 

operations revealed that among all operations, procedure calls/return are the most 

time-consuming. With regards to the type of operands used during typical 

computation, it was noticed that the majority of references (no less than 60%) are 

made to simple scalar variables and that no less than 80% of scalars are local 

variables (to procedures). 

The above observations about typical program behavior have led to the following 

conclusions: 

 Simple movement of data (represented by assignment statements), rather than 

complex operations, are substantial and should be optimized. 

 

 Conditional branches are predominant and therefore careful attention should be 

paid to the sequencing of instructions. This is particularly true when it is 

known that pipelining is indispensable to use. 

 Procedure calls/return are the most time-consuming operations and therefore a 

mechanism should be devised to make the communication of parameters 

among the calling and the called procedures cause the least number of instruc-

tions to execute. 

 

   

TABLE 10.1  Estimated Distribution of Operations  
    

Operations Estimated percentage  
    

Assignment statements 35   

Loops 5   

Procedure calls 15   

Conditional branches 40   

Unconditional branches 3   

Others 2   
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 A prime candidate for optimization is the mechanism for storing and accessing 

local scalar variables. 

 

The above conclusions have led to the argument that instead of bringing the instruc-

tion set architecture closer to HLLs, it should be more appropriate to rather optimize 

the performance of the most time-consuming features of typical HLL programs. This 

is obviously a call for making the architecture simpler rather than complex. 

Remember that complex operations such as long division represent only a small por-

tion (less than 2%) of the operations performed during a typical computation. One 

then should ask the question: how can we achieve that? The answer is by (a) keeping 

the most frequently accessed operands in CPU registers and (b) minimizing the 

register-to-memory operations. 

The above two principles can be achieved using the following mechanisms: 

 Use a large number of registers to optimize operand referencing and reduce the 

processor memory traffic. 

 Optimize the design of instruction pipelines such that minimum compiler code 

generation can be achieved. 

 

 Use a simplified instruction set and leave out those complex and unnecessary 

instructions. 

 

The following two approaches were identified to implement the above three 

mechanisms. 

 Software approach. Use the compiler to maximize register usage by allocating 

registers to those variables that are used the most in a given time period (this is 

the philosophy adopted in the Stanford MIPs machine). 

 

 Hardware approach. Use ample CPU registers so that more variables can be held 

in registers for larger periods of time (this is the philosophy adopted in the Berkeley 

RISC machine). The hardware approach necessitates the use of a new register 

organization, called overlapped register window.  

 

 

RISCs VERSUS CISC 

The choice of RISC versus CISC depends totally on the factors that must be 

considered by a computer designer. These factors include size, complexity, and 

speed. A RISC architecture has to execute more instructions to perform the same 

function performed by a CISC architecture. To compensate for this drawback, RISC 

architectures must use the chip area saved by not using complex instruction decoders 

in providing a large number of CPU registers, additional execution units, and 

instruction caches. The use of these resources leads to a reduction in the traffic 

between the processor and the memory. On the other hand, a CISC architecture with 

a richer and more complex instructions, will require a smaller number of instructions 

than its RISC counterpart.  
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However, a CISC architecture requires a complex decoding scheme and hence is 

subject to logic delays. It is therefore reason-able to consider that the RISC and CISC 

paradigms differ primarily in the strategy used to trade off different design factors. 

There is very little reason to believe that an idea that improves performance for a RISC 

architecture will fail to do the same thing in a CISC architecture and vice versa. For 

example, one key issue in RISC development is the use of optimizing the compiler to 

reduce the complexity of the hardware and to optimize the use of CPU registers. These 

same ideas should be applicable to CISC compilers. Increasing 

 

TABLE 10.3 RISC Versus CISC Performance 

 

 

 MIPS CPI VAX CPI CPI Instruction 

Application (RISC) (CISC) ratio Ratio 
     

Spice 2G6 1.80 8.02 4.44 2.48 

Matrix300 3.06 13.81 4.51 2.37 

Nasa 7 3.01 14.95 4.97 2.10 

Espresso 1.06 5.40 5.09 1.70 
     

 

the number of CPU registers could very much improve the performance of a CISC 

machine. This could be the reason behind not finding a pure commercially available 

RISC (or CISC) machine. It is not unusual to see a RISC machine with complex floating-

point instructions (see the details of the SPARC architecture in the next sec-tion). It is 

equally expected to see CISC machines making use of the register win-dows RISC idea. 

In fact there have been studies indicating that a CISC machine such as the Motorola 

680xx with a register window will achieve a 2 to 4 times decrease in the memory traffic. 

This is the same factor that can be achieved by a RISC architecture, such as the Berkeley 

RISC, due to the use of a register window. 

 

It should, however, be noted that most processor developers (except for Intel and 

its associates) have opted for RISC processors. Computer system manufacturers such 

as Sun Microsystems are using RISC processors in their products. However, for 

compatibility with the PC-based market, such companies are still producing CISC-

based products. 

 

Tables 10.3 and 10.4 show a limited comparison between an example RISC and 

CISC machine in terms of performance and characteristics, respectively. 

 

An elaborate comparison among a number of commercially available RISC and 

CISC machines is shown in Table 10.5. 

 

It is worth mentioning at this point that the following set of common character-

istics among RISC machines is observed: 

 

 Fixed-length instructions 
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 Limited number of instructions (128 or less) 

 

 Limited set of simple addressing modes (minimum of two: indexed and PC-

relative) 

 

 All operations are performed on registers; no memory operations 

 

 Only two memory operations: Load and Store 

 

TABLE 10.4 RISC Versus CISC Characteristics 

 

 

 VAX-11 Berkeley RISC-1 

Characteristic (CISC) (RISC) 
   

Number of instructions 303 31 

Instruction size (bits) 16-456 32 

Addressing modes 22 3 

No. general purpose registers 16 138 
   

 

 Pipelined instruction execution 

 

 Large number of general-purpose registers or the use of advanced compiler 

technology to optimize register usage 

 

 One instruction per clock cycle 

 

 Hardwired control unit design rather than microprogramming 

 

 

2 5 6 5 1 8 5 

Type DST Op-Code SRC 1 0 FP-OP SRC 2 

Type DST Op-Code SRC 1 1 Immediate Constant  

 

 

 Figure 10.2  Three operand instructions formats used in RISC 

3. Branch & Call: JMPX COND, (Rx)S; PC Rx þ S; where COND is a condition 

4. Special Instructions: GETPSW Rd; Rd PSW 

 

All arithmetic and logical instructions have three operands and have the form Desti-

nation : ¼ source1 op source2 (Fig. 10.2). The LOAD and STORE instructions may use 
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either of the indicated formats with DST being the register to be loaded or stored. The 

low order 19 bits of the instructions are used to determine the effective address. 

 

Instructions load and store 8-, 16-, 32-, and 64-bit quantities into 32-bit registers. 

Two methods are provided for calling procedures. The CALL instruction uses a 30-

bit PC relative offset (Fig. 10.3). 

 

The JMP instruction uses any of the instruction formats used for arithmetic and 

logical operations and allows the return address to be put in any register. 

RISC uses a three-address instruction format with the availability of some two-and one-

address instructions. There are only two addressing modes. These are indexed mode and 

PC relative modes. The indexed mode can be used to synthesize three other modes. These 

are base-absolute (direct), register indirect, and indexed for linear byte array modes. 

RISC uses a static two-stage pipeline: fetch and execute. 

 

 

The floating-point unit (FPU) contains thirty-two 32-bit registers to hold 32 single 

precision (32-bit) floating-point operands, 16 double-precision (64-bit) operands, or eight 

extended-precision (128-bit) operands. The FPU can execute about 20 floating-point 

instructions most of them in single-, double-, or extended-precision using the first 

instruction format used for arithmetic. In addition to instructions for loading and storing 

FPUs registers, the CPU can also test FPUs registers and branch conditionally on results. 

RISC employs a conventional MMU supporting a single paged 32-bit address space. The 

RISC four-bus organization is shown in Figure 10.4. 

 

 


