
ADESINA O.B/CTE 214 Page 1

FUNDAMENTALS

OF COMPUTER

ORGANIZATION

AND

ARCHITECTURE

Mostafa Abd-El-Barr
King Fahd University of Petroleum & Minerals (KFUPM)

Hesham El-Rewini
Southern Methodist University

ADESINA O.B/CTE 214 Page 2

CHAPTER ONE

Introduction to Computer Systems

The technological advances witnessed in the computer industry are

the result of a long chain of immense and successful efforts made by

two major forces. These are the academia, represented by university

research centers, and the industry, represented by computer

companies. It is; however, fair to say that the current technological

advances in the computer industry owe their inception to university

research centers. In order to appreciate the current technological

advances in the computer industry, one has to trace back through the

history of computers and their development. The objective of such

historical review is to understand the factors affecting computing as

we know it today and hopefully to forecast the future of computation.

A great majority of the computers of our daily use are known as

general purpose machines. These are machines that are built with no

specific application in mind, but rather are capable of performing

computation needed by a diversity of applications. These machines

are to be distinguished from those built to serve (tailored to) specific

applications. The latter are known as special purpose machines.

Computer systems have conventionally been defined through their

interfaces at a number of layered abstraction levels, each providing

functional support to its predecessor. Included among the levels are

the application programs, the high-level languages, and the set of

machine instructions. Based on the interface between different levels

of the system, a number of computer architectures can be defined.

The interface between the application programs and a high-level

language is referred to as language architecture.

The instruction set architecture defines the interface between the

basic machine instruction set and the runtime and I/O control. A

different definition of computer architecture is built on four basic

viewpoints. These are the structure, the organization, the

implementation, and the performance. In this definition, the structure

defines the interconnection of various hardware components, the

organization defines the dynamic interplay and management of the

various components, the implementation defines the detailed design

ADESINA O.B/CTE 214 Page 3

of hardware components, and the performance specifies the behavior

of the computer system.

Historical Background

In this section, we would like to provide a historical background on

the evolution of cornerstone ideas in the computing industry. We

should emphasize at the outset that the effort to build computers has

not originated at one single place. There is every reason for us to

believe that attempts to build the first computer existed in different

geographically distributed places. We also firmly believe that

building a computer requires teamwork. Therefore, when some

people attribute a machine to the name of a single researcher, what

they actually mean is that such researcher may have led the team who

introduced the machine. We, therefore, see it more appropriate to

mention the machine and the place it was first introduced without

linking that to a specific name. We believe that such an approach is

fair and should eliminate any controversy about researchers and their

names. It is probably fair to say that the first program-controlled

(mechanical) computer ever build was the Z1 (1938). This was

followed in 1939 by the Z2 as the first operational program-

controlled computer with fixed-point arithmetic.

However, the first recorded university-based attempt to build a

computer originated on Iowa State University campus in the early

1940s. Researchers on that campus were able to build a small-scale

special-purpose electronic computer. However, that computer was

never completely operational. Just about the same time a complete

design of a fully functional programmable special-purpose machine,

the Z3, was reported in Germany in 1941. It appears that the lack of

funding prevented such design from being implemented. History

recorded that while these two attempts were in progress, researchers

from different parts of the world had opportunities to gain first-hand

experience through their visits to the laboratories and institutes

carrying out the work. It is assumed that such first-hand visits and

interchange of ideas enabled the visitors to embark on similar

projects in their own laboratories back home.

As far as general-purpose machines are concerned, the University of

Pennsylvania is recorded to have hosted the building of the

ADESINA O.B/CTE 214 Page 4

Electronic Numerical Integrator and Calculator (ENIAC) machine in

1944. It was the first operational general-purpose machine built using

vacuum tubes. The machine was primarily built to help compute

artillery firing tables during World War II. It was programmable

through manual set-ting of switches and plugging of cables. The

machine was slow by today’s standard, with a limited amount of

storage and primitive programmability. An improved version of the

ENIAC was proposed on the same campus. The improved version of

the ENIAC, called the Electronic Discrete Variable Automatic

Computer (EDVAC), was an attempt to improve the way programs

are entered and explore the concept of stored programs.

It was not until 1952 that the EDVAC project was completed.

Inspired by the ideas implemented in the ENIAC, researchers at the

Institute for Advanced Study (IAS) at Princeton built (in 1946) the

IAS machine, which was about 10 times faster than the ENIAC.

In 1946 and while the EDVAC project was in progress, a similar

project was initiated at Cambridge University. The project was to

build a stored-program com-puter, known as the Electronic Delay

Storage Automatic Calculator (EDSAC). It was in 1949 that the

EDSAC became the world’s first full-scale, stored-program, fully

operational computer. A spin-off of the EDSAC resulted in a series

of machines introduced at Harvard. The series consisted of MARK I,

II, III, and IV. The latter two machines introduced the concept of

separate memories for instructions and data. The term Harvard

Architecture was given to such machines to indicate the use of

separate memories. It should be noted that the term Harvard

Architecture is used today to describe machines with separate cache

for instructions and data.

The first general-purpose commercial computer, the UNIVersal

Automatic Computer (UNIVAC I), was on the market by the middle

of 1951. It represented an improvement over the BINAC, which was

built in 1949. IBM announced its first com-puter, the IBM701, in

1952. The early 1950s witnessed a slowdown in the computer

industry. In 1964 IBM announced a line of products under the name

IBM 360 series. The series included a number of models that varied

in price and performance. This led Digital Equipment Corporation

ADESINA O.B/CTE 214 Page 5

(DEC) to introduce the first minicomputer, the PDP-8. It was

considered a remarkably low-cost machine.

Intel introduced the first microprocessor, the Intel 4004, in 1971. The

world witnessed the birth of the first personal computer (PC) in 1977

when Apple computer series were first introduced. In 1977 the world

also witnessed the introduction of the VAX-11/780 by DEC. Intel

followed suit by introducing the first of the most popular

microprocessor, the 80 86 series.

Personal computers, which were introduced in 1977 by Altair,

Processor Technology, North Star, Tandy, Commodore, Apple, and

many others, enhanced the productivity of end-users in numerous

departments. Personal computers from Compaq, Apple, IBM, Dell,

and many others, soon became pervasive, and changed the face of

computing.

In parallel with small-scale machines, supercomputers were coming

into play. The first such supercomputer, the CDC 6600, was

introduced in 1961 by Control Data Corporation. Cray Research

Corporation introduced the best cost/performance supercomputer, the

Cray-1, in 1976.

The 1980s and 1990s witnessed the introduction of many

commercial parallel computers with multiple processors. They can

generally be classified into two main categories: (1) shared memory

and (2) distributed memory systems. The number of processors in a

single machine ranged from several in a shared memory computer to

hundreds of thousands in a massively parallel system. Examples of

parallel computers during this era include Sequent Symmetry, Intel

iPSC, nCUBE, Intel Paragon, Thinking Machines (CM-2, CM-5),

MsPar (MP), Fujitsu (VPP500), and others.

One of the clear trends in computing is the substitution of centralized

servers by networks of computers. These networks connect

inexpensive, powerful desktop machines to form unequaled

computing power. Local area networks (LAN) of powerful personal

computers and workstations began to replace mainframes and minis

by 1990. These individual desktop computers were soon to be

connected into larger complexes of computing by wide area networks

(WAN).

ADESINA O.B/CTE 214 Page 6

TABLE 1.1 Four Decades of Computing

Feature Batch Time-sharing Desktop Network

Decade 1960s 1970s 1980s 1990s

Location Computer room Terminal room Desktop Mobile

Users Experts Specialists Individuals Groups

Data Alphanumeric Text, numbers Fonts, graphs Multimedia

Objective Calculate Access Present Communicate

Interface Punched card Keyboard & CRT See & point Ask & tell

Operation Process Edit Layout Orchestrate

Connectivity None Peripheral cable LAN Internet

Owners Corporate computer Divisional IS shops Departmental Everyone

 centers end-users

CRT, cathode ray tube; LAN, local area network.

The pervasiveness of the Internet created interest in network

computing and more recently in grid computing. Grids are

geographically distributed platforms of com-putation. They should

provide dependable, consistent, pervasive, and inexpensive access to

high-end computational facilities. Table 1.1 is modified from a table

proposed by Lawrence Tesler (1995). In this table, major

characteristics of the different computing paradigms are associated

with each decade of computing, starting from 1960.

Architectural Development And Styles

Computer architects have always been striving to increase the

performance of their architectures. This has taken a number of forms.

Among these is the philosophy that by doing more in a single

instruction, one can use a smaller number of instructions to perform

the same job. The immediate consequence of this is the need for

fewer memory read/write operations and an eventual speedup of

operations. It was also argued that increasing the complexity of

instructions and the number of addressing modes has the theoretical

advantage of reducing the “semantic gap” between the instructions in

a high-level language and those in the low-level (machine) language.

A single (machine) instruction to convert several binary coded

decimal (BCD) numbers to binary is an example for how complex

ADESINA O.B/CTE 214 Page 7

some instructions were intended to be. The huge number of

addressing modes considered (more than 20 in the VAX machine)

further adds to the complexity of instructions. Machines following

this philosophy have been referred to as complex instructions set

computers (CISCs). Examples of CISC machines include the Intel

PentiumTM, the Motorola MC68000TM, and the IBM & Macintosh

PowerPCTM.

It should be noted that as more capabilities were added to their

processors, manufacturers realized that it was increasingly difficult to

support higher clock rcomplexity of computations within a single

clock period. A number of studies from the mid-1970s and early-

1980s also identified that in typical programs more than 80% of the

instructions executed are those using assignment statements,

conditional branching and procedure calls. It was also surprising to

find out that simple assign-ment statements constitute almost 50% of

those operations. These findings caused a different philosophy to

emerge. This philosophy promotes the optimization of architectures

by speeding up those operations that are most frequently used while

reducing the instruction complexities and the number of addressing

modes. Machines following this philosophy have been referred to as

reduced instructions set computers (RISCs). Examples of RISCs

include the Sun SPARCTM and MIPSTM machines.

The above two philosophies in architecture design have led to the

unresolved controversy as to which architecture style is “best.” It

should, however, be mentioned that studies have indicated that RISC

architectures would indeed lead to faster execution of programs. The

majority of contemporary microprocessor chips seems to follow the

RISC paradigm. In this book we will present the salient features and

examples for both CISC and RISC machines.

Technological Development

Computer technology has shown an unprecedented rate of

improvement. This includes the development of processors and

memories. Indeed, it is the advances in technology that have fueled

the computer industry. The integration of numbers of transistors (a

transistor is a controlled on/off switch) into a single chip has

increased from a few hundred to millions. This impressive increase

ADESINA O.B/CTE 214 Page 8

has been made possible by the advances in the fabrication technology

of transistors.

The scale of integration has grown from small-scale (SSI) to

medium-scale (MSI) to large-scale (LSI) to very large-scale

integration (VLSI), and currently to wafer-scale integration (WSI).

Table 1.2 shows the typical numbers of devices per chip in each of

these technologies. It should be mentioned that the continuous

decrease in the minimum devices feature size has led to a continuous

increase in the number of devices per chip,
TABLE 1.2 Numbers of Devices per Chip

Integration Technology Typical number of devices Typical functions

SSI Bipolar 10 – 20 Gates and flip-flops

MSI Bipolar & MOS 50 – 100 Adders & counters

LSI Bipolar & MOS 100 – 10,000 ROM & RAM

VLSI CMOS (mostly) 10,000 – 5,000,000 Processors

WSI CMOS .5,000,000 DSP & special purposes

which in turn has led to a number of developments. Among these is

the increase in the number of devices in RAM memories, which in

turn helps designers to trade off memory size for speed. The

improvement in the feature size provides golden opportunities for

introducing improved design styles.

CHAPTER 2

Instruction Set Architecture and Design

In this chapter, we consider the basic principles involved in

instruction set architecture and design. Our discussion starts with a

consideration of memory locations and addresses. We present an

abstract model of the main memory in which it is considered as a

sequence of cells each capable of storing n bits. We then address

the issue of storing and retrieving information into and from the

memory. The information stored and/or retrieved from the memory

needs to be addressed.

ADESINA O.B/CTE 214 Page 9

A discussion on a number of different ways to address memory

locations (addressing modes) is the next topic to be discussed in the

chapter. A program consists of a number of instructions that have to

be accessed in a certain order. That motivates us to explain the issue

of instruction execution and sequencing in some detail. We then

show the application of the presented addressing modes and

instruction characteristics in writing sample segment codes for

performing a number of simple programming tasks.

A unique characteristic of computer memory is that it should be

organized in a hierarchy. In such hierarchy, larger and slower

memories are used to supplement smaller and faster ones. A typical

memory hierarchy starts with a small, expensive, and relatively fast

module, called the cache. The cache is followed in the hierarchy by

a larger, less expensive, and relatively slow main memory part.

Cache and main memory are built using semiconductor material.

They are followed in the hierarchy by larger, less expensive, and far

slower magnetic memories that consist of the (hard) disk and the

tape. Our concentration in this chapter is on the (main) memory

from the programmer’s point of view. In particular, we focus on the

way information is stored in and retrieved out of the memory.

Memory Locations and Operations

The (main) memory can be modeled as an array of millions of

adjacent cells, each capable of storing a binary digit (bit), having

value of 1 or 0. These cells are organized in the form of groups of

fixed number, say n, of cells that can be dealt with as an atomic

entity. An entity consisting of 8 bits is called a byte. In many

systems, the entity consisting of n bits that can be stored and

retrieved in and out of the memory using one basic memory

operation is called a word (the smallest addressable entity). Typical

size of a word ranges from 16 to 64 bits. It is, however, customary to

express the size of the memory in terms of bytes. For example, the

size of a typical memory of a personal computer is 256 Mbytes, that

is, 256 220 ¼ 228 bytes.

In order to be able to move a word in and out of the memory, a

distinct address has to be assigned to each word.

ADESINA O.B/CTE 214 Page 10

This address will be used to determine the location in the memory in

which a given word is to be stored. This is called a memory write

operation. Similarly, the address will be used to determine the

memory location from which a word is to be retrieved from the

memory. This is called a memory read operation. The number of bits,

l, needed to distinctly address M words in a memory is given by l ¼

log2 M.

For example, if the size of the memory is 64 M (read as 64 mega-

words), then the number of bits in the address is log2 (64 220) ¼ log2

(226) ¼ 26 bits. Alternatively, if the number of bits in the address is l,

then the maximum memory size (in terms of the number of words

that can be addressed using these l bits) is M ¼ 2l. Figure 2.1

illustrates the concept of memory words and word address as

explained above.

As mentioned above, there are two basic memory operations. These

are the memory write and memory read operations. During a memory

write operation a word is stored into a memory location whose

address is specified. During a memory read operation a word is read

from a memory location whose address is specified. Typically,

memory read and memory write operations are performed by the

central processing unit (CPU).

Figure 2.6 Illustration of the direct addressing mode

ADESINA O.B/CTE 214 Page 11

Three basic steps are needed in order for the CPU to perform a write

operation into a specified memory location:

 The word to be stored into the memory location is first loaded

by the CPU into a specified register, called the memory data

register (MDR).

 The address of the location into which the word is to be stored

is loaded by the CPU into a specified register, called the

memory address register (MAR).

 A signal, called write, is issued by the CPU indicating that the

word stored in the MDR is to be stored in the memory

location whose address in loaded in the MAR.

Figure 2.2 illustrates the operation of writing the word given by 7E

(in hex) into the memory location whose address is 2005. Part a of

the figure shows the status of the registers and memory locations

involved in the write operation before the execution of the operation.

Part b of the figure shows the status after the execution of the

operation. It is worth mentioning that the MDR and the MAR are

registers used exclusively by the CPU and are not accessible to the

programmer.

Similar to the write operation, three basic steps are needed in order to

perform a memory read operation:

 The address of the location from which the word is to be read

is loaded into the MAR.

 A signal, called read, is issued by the CPU indicating that the

word whose address is in the MAR is to be read into the

MDR

 After some time, corresponding to the memory delay in reading

the specified word, the required word will be loaded by the

memory into the MDR ready for use by the CPU.

ADESINA O.B/CTE 214 Page 12

Before execution After execution

Figure 2.2 Illustration of the memory write operation

Figure 2.3 Illustration of the memory read operation

Figure 2.3 illustrates the operation of reading the word stored in the memory

location whose address is 2010. Part a of the figure shows the status of the

registers and memory locations involved in the read operation before the execution

of the operation. Part b of the figure shows the status after the read operation.

ADESINA O.B/CTE 214 Page 13

Addressing Modes

Information involved in any operation performed by the CPU needs

to be addressed. In computer terminology, such information is called

the operand. Therefore, any instruction issued by the processor must

carry at least two types of information. These are the operation to be

performed, encoded in what is called the op-code field, and the

address information of the operand on which the operation is to be

performed, encoded in what is called the address field.

Instructions can be classified based on the number of operands as:

three-address, two-address, one-and-half-address, one-address, and

zero-address. We explain these classes together with simple

examples in the following paragraphs. It should be noted that in

presenting these examples, we would use the convention operation,

source, destination to express any instruction. In that convention,

operation rep-resents the operation to be performed, for example,

add, subtract, write, or read. The source field represents the source

operand(s). The source operand can be a constant, a value stored in a

register, or a value stored in the memory. The destination field

represents the place where the result of the operation is to be stored,

for example, a register or a memory location.

 three-address instruction takes the form operation add-1, add-2,

add-3.

 In this form, each of add-1, add-2, and add-3 refers to a register or to

a memory location. Consider, for example, the instruction ADD

R1,R2,R3. This instruction indicates that the operation to be

performed is addition. It also indicates that the values to be added are

those stored in registers R1 and R2 that the results should be stored in

register R3.

An example of a three-address instruction that refers to memory

locations may take the form ADD A,B,C. The instruction adds the

contents of memory location A to the contents of memory location B

and stores the result in memory location C.

A two-address instruction takes the form operation add-1, add-2.

In this form, each of add-1 and add-2 refers to a register or to a

memory location. Consider, for example, the instruction ADD R1,R2.

This instruction adds the contents of register R1 to the contents of

register R2 and stores the results in register R2.

ADESINA O.B/CTE 214 Page 14

The original contents of register R2 are lost due to this operation

while the original contents of register R1 remain intact. This

instruction is equivalent to a three-address instruction of the form

ADD R1,R2,R2. A similar instruction that uses memory locations

instead of registers can take the form ADD A,B. In this case, the

contents of memory location A are added to the contents of memory

location B and the result is used to override the original contents of

memory location B.

The operation performed by the three-address instruction ADD

A,B,C can be per-formed by the two two-address instructions MOVE

B,C and ADD A,C. This is because the first instruction moves the

contents of location B into location C and the second instruction adds

the contents of location A to those of location C (the con-tents of

location B) and stores the result in location C.

A one-address instruction takes the form ADD R1. In this case the

instruction implicitly refers to a register, called the Accumulator Racc,

such that the contents of the accumulator is added to the contents of

the register R1 and the results are stored back into the accumulator

Racc.

If a memory location is used instead of a register then an instruction

of the form ADD B is used. In this case, the instruction adds the

content of the accumulator Racc to the content of memory location B

and stores the result back into the accumulator Racc. The instruction

ADD R1 is equivalent to the three-address instruction ADD

R1,Racc,Racc or to the two-address instruction ADD R1,Racc.

Between the two- and the one-address instruction, there can be a one-

and-half address instruction. Consider, for example, the instruction

ADD B,R1. In this case, the instruction adds the contents of register

R1 to the contents of memory location B and stores the result in

register R1. Owing to the fact that the instruction uses two types of

addressing, that is, a register and a memory location, it is called a

one-and-half-address instruction. This is because register addressing

needs a smaller number of bits than those needed by memory

addressing.

It is interesting to indicate that there exist zero-address instructions.

These are the instructions that use stack operation.

ADESINA O.B/CTE 214 Page 15

A stack is a data organization mechanism in which the last data item

stored is the first data item retrieved. Two specific operations can be

performed on a stack. These are the push and the pop operations.

Figure 2.4 illustrates these two operations.

As can be seen, a specific register, called the stack pointer (SP), is

used to indicate the stack location that can be addressed. In the stack

push operation, the SP value is used to indicate the location (called

the top of the stack) in which the value (5A) is to be stored (in this

case it is location 1023). After storing (pushing) this value the SP is

Figure 2.4 The stack push and pop operations

incremented to indicate to location 1024. In the stack pop operation,

the SP is first decremented to become 1021. The value stored at this

location (DD in this case) is retrieved (popped out) and stored in the

shown register. Different operations can be performed using the stack

structure. Consider, for example, an instruction such as ADD (SP)þ,

(SP). The instruction adds the contents of the stack location pointed

to by the SP to those pointed to by the SP þ 1 and stores the result on

the stack in the location pointed to by the current value of the SP.

Figure 2.5 illustrates such an addition operation. Table 2.1

summarizes the instruction classification discussed above.

ADESINA O.B/CTE 214 Page 16

The different ways in which operands can be addressed are called the

addressing modes. Addressing modes differ in the way the address

information of operands is specified. The simplest addressing mode

is to include the operand itself in the instruction, that is, no address

information is needed. This is called immediate addressing.

A more involved addressing mode is to compute the address of the

operand by adding a constant value to the content of a register. This

is called indexed addressing. Between these two addressing modes

there exist a number of other addressing modes including absolute

addressing, direct addressing, and indirect addressing. A number of

different addressing modes are explained below.

SP - 52 1000 - 13 1000

SP

1001

1001 39 39

 1050 1002 1050 1002

Figure 2.5 Addition using the stack

TABLE 2.1 Instruction Classification

Instruction class Example

Three-address ADD R1,R2,R3

 ADD A,B,C

Two-address ADD R1,R2

 ADD A,B

One-and-half-address ADD B,R1

One-address ADD R1

Zero-address ADD (SP)þ, (SP)

 2.2. ADDRESSING MODES21

ADESINA O.B/CTE 214 Page 17

Immediate Mode

According to this addressing mode, the value of the operand is

(immediately) avail-able in the instruction itself. Consider, for

example, the case of loading the decimal value 1000 into a register

Ri. This operation can be performed using an instruction such as the

following: LOAD #1000, Ri. In this instruction, the operation to be

per-formed is to load a value into a register. The source operand is

(immediately) given as 1000, and the destination is the register Ri. It

should be noted that in order to indicate that the value 1000

mentioned in the instruction is the operand itself and not its address

(immediate mode), it is customary to prefix the operand by the

special character (#). As can be seen the use of the immediate

addressing mode is simple. The use of immediate addressing leads to

poor programming practice. This is because a change in the value of

an operand requires a change in every instruction that uses the

immediate value of such an operand. A more flexible addressing

mode is explained below.

 Direct (Absolute) Mode

According to this addressing mode, the address of the memory

location that holds the operand is included in the instruction.

Consider, for example, the case of loading the value of the operand

stored in memory location 1000 into register Ri. This operation can

be performed using an instruction such as LOAD 1000, Ri. In this

instruction, the source operand is the value stored in the memory

location whose address is 1000, and the destination is the register Ri.

Note that the value 1000 is not prefixed with any special characters,

indicating that it is the (direct or absolute) address of the source

operand. Figure 2.6 shows an illustration of the direct addressing

mode.

ADESINA O.B/CTE 214 Page 18

For

Memory Operation Address

Operand

Figure 2.6 Illustration of the direct addressing mode

example, if the content of the memory location whose address is

1000 was (2345) at the time when the instruction LOAD 1000, Ri is

executed, then the result of executing such instruction is to load the

value (2345) into register Ri. Direct (absolute) addressing mode

provides more flexibility compared to the immediate mode.

However, it requires the explicit inclusion of the operand address in

the instruction. A more flexible addressing mechanism is provided

through the use of the indirect addressing mode. This is explained

below.

Indirect Mode

In the indirect mode, what is included in the instruction is not the

address of the operand, but rather a name of a register or a memory

location that holds the (effective) address of the operand. In order to

indicate the use of indirection in the instruction, it is customary to

include the name of the register or the memory location in

parentheses. Consider, for example, the instruction LOAD (1000), Ri.

This instruction has the memory location 1000 enclosed in

parentheses, thus indicating indirection. The meaning of this

instruction is to load register Ri with the contents of the memory

location whose address is stored at memory address 1000. Because

indirection can be made through either a register or a memory

location, therefore, we can identify two types of indirect addressing.

These are register indirect addressing, if a register is used to hold the

address of the operand, and memory indirect addressing, if a memory

location is used to hold the address of the operand. The two types are

illustrated in Figure 2.7.

ADESINA O.B/CTE 214 Page 19

Figure 2.7 Illustration of the indirect addressing mode

Indexed Mode

In this addressing mode, the address of the operand is obtained by

adding a constant to the content of a register, called the index

register. Consider, for example, the instruction LOAD X(Rind), Ri.

This instruction loads register Ri with the contents of the memory

location whose address is the sum of the contents of register Rind and

the value X. Index addressing is indicated in the instruction by

including the name of the index register in parentheses and using the

symbol X to indicate the constant to be added. Figure 2.8 illustrates

indexed addressing. As can be seen, indexing requires an additional

level of complexity over register indirect addressing.

Other Modes

The addressing modes presented above represent the most commonly

used modes in most processors. They provide the programmer with

sufficient means to handle most general programming tasks.

However, a number of other addressing modes have been used in a

number of processors to facilitate execution of specific programming

tasks. These additional addressing modes are more involved as

compared to those presented above.

ADESINA O.B/CTE 214 Page 20

Among these addressing modes the relative, auto-increment, and the

auto-decrement modes represent the most well-known ones. These

are explained below.

Relative Mode Recall that in indexed addressing, an index register,

Rind , is used. Relative addressing is the same as indexed addressing

except that the program counter (PC) replaces the index register. For

example, the instruction LOAD X(PC), Ri loads register Ri with the

contents of the memory location whose address is the sum of the

contents of the program counter (PC) and the value X.

Figure 2.9 illustrates the relative addressing mode.

Auto-increment Mode This addressing mode is similar to the register

indirect addressing mode in the sense that the effective address of the

operand is the content of a register; call it the auto-increment register,

that is included in the instruction.

Operation Value X Memory

+

Index Register (Rind)

 operand

Figure 2.8 Illustration of the indexed addressing mode

 Memory

Operation Value X

+

Program Counter (PC)

 operand

 Figure 2.9 Illustration of relative addressing mode

ADESINA O.B/CTE 214 Page 21

However, with auto-increment, the content of the auto-increment

register is automatically incremented after accessing the operand. As

before, indirection is indicated by including the auto-increment

register in parentheses. The automatic increment of the register’s

content after accessing the operand is indicated by including a (þ)

after the parentheses. Consider, for example, the instruction LOAD

(Rauto)þ, Ri. This instruction loads register Ri with the operand whose

address is the content of register Rauto. After loading the operand into

register Ri, the content of register Rauto is incremented, pointing for

example to the next item in a list of items. Figure 2.10 illustrates the

auto-increment addressing mode.

Figure 2.10 Illustration of the auto-increment addressing mode

ADESINA O.B/CTE 214 Page 22

Auto-decrement Mode Similar to the auto-increment, the auto-

decrement mode uses a register to hold the address of the operand.

However, in this case the content of the auto-decrement register is

first decremented and the new content is used as the effective address

of the operand. In order to reflect the fact that the content of the auto-

decrement register is decremented before accessing the operand, a (2)

is included before the indirection parentheses. Consider, for example,

the instruction LOAD (Rauto), Ri. This instruction decrements the

content of the register Rauto and then uses the new content as the

effective address of the operand that is to be loaded into register Ri.

Figure 2.11 illustrates the auto-decrement addressing mode. The

seven addressing modes presented above are summarized in Table

2.2. In each case, the table shows the name of the addressing mode,

its definition, and a generic example illustrating the use of such

mode.

In presenting the different addressing modes we have used the load

instruction for illustration. However, it should be understood that

there are other types of instructions in a given machine. In the

following section we elaborate on the different types of instructions

that typically constitute the instruction set of a given machine.

Figure 2.11 Illustration of the auto-decrement addressing mode

ADESINA O.B/CTE 214 Page 23

TABLE 2.2 Summary of Addressing Modes

Addressing

mode Definition Example Operation

Immediate Value of operand is included in load #1000, Ri Ri 1000

 the instruction

Direct Address of operand is included load 1000, Ri Ri M[1000]

(Absolute) in the instruction

Register Operand is in a memory load (Rj), Ri Ri M[Rj]

indirect location whose address is in

 the register specified in the

 instruction

Memory Operand is in a memory load (1000), Ri Ri M[1000]

indirect location whose address is in

 the memory location

 specified in the instruction

Indexed Address of operand is the sum load X(Rind), Ri
R

i M[Rind þ X]

 of an index value and the

 contents of an index register

Relative Address of operand is the sum load X(PC), Ri Ri M[PC þ X]

 of an index value and the

 contents of the program

 counter

Autoincrement Address of operand is in a load (Rauto)þ, Ri Ri M[Rauto]

 register whose value is
R

auto
R

auto
þ

1

 incremented after fetching

 the operand

Autodecrement Address of operand is in a load 2 (Rauto), Ri
R

auto
R

auto
2

1

 register whose value is Ri M[Rauto]

 decremented before fetching

 the operand

Instruction Types

The type of instructions forming the instruction set of a machine is an

indication of the power of the underlying architecture of the machine.

Instructions can in general be classified as in the following

Subsections

ADESINA O.B/CTE 214 Page 24

Data Movement Instructions

Data movement instructions are used to move data among the

different units of the machine. Most notably among these are

instructions that are used to move data among the different registers

in the CPU. A simple register to register movement of data can be

made through the instruction

MOVE Ri,Rj

TABLE 2.3 Some Common Data Movement Operations

Data movement

operation Meaning

MOVE Move data (a word or a block) from a given source

 (a register or a memory) to a given destination

LOAD Load data from memory to a register

STORE Store data into memory from a register

PUSH Store data from a register to stack

POP Retrieve data from stack into a register

This instruction moves the content of register Ri to register Rj. The

effect of the instruc-tion is to override the contents of the

(destination) register Rj without changing the con-tents of the

(source) register Ri. Data movement instructions include those used

to move data to (from) registers from (to) memory. These

instructions are usually referred to as the load and store instructions,

respectively. Examples of the two instructions are

LOAD 25838, Rj

STORE Ri, 1024

The first instruction loads the content of the memory location whose

address is 25838 into the destination register Rj. The content of the

memory location is unchanged by executing the LOAD instruction.

The STORE instruction stores the content of the source register Ri

into the memory location 1024. The content of the source register is

unchanged by executing the STORE instruction. Table 2.3 shows

some common data transfer operations and their meanings.

ADESINA O.B/CTE 214 Page 25

Arithmetic and Logical Instructions

Arithmetic and logical instructions are those used to perform

arithmetic and logical manipulation of registers and memory

contents. Examples of arithmetic instructions include the ADD and

SUBTRACT instructions. These are

ADD R1,R2,R0

SUBTRACT R1,R2,R0

The first instruction adds the contents of source registers R1 and R2

and stores the result in destination register R0. The second instruction

subtracts the contents of the source registers R1 and R2 and stores the

result in the destination register R0. The contents of the source

registers are unchanged by the ADD and the SUBTRACT

instructions. In addition to the ADD and SUBTRACT instructions,

some machines have MULTIPLY and DIVIDE instructions. These

two instructions are expensive to implement and could be substituted

by the use of repeated addition or repeated subtraction. Therefore,

most modern architectures do not have MULTIPLY or

TABLE 2.4 Some Common Arithmetic Operations

Arithmetic operations Meaning

ADD Perform the arithmetic sum of two operands

SUBTRACT Perform the arithmetic difference of two operands

MULTIPLY Perform the product of two operands

DIVIDE Perform the division of two operands

INCREMENT Add one to the contents of a register

DECREMENT Subtract one from the contents of a register

DIVIDE instructions on their instruction set. Table 2.4 shows some

common arithmetic operations and their meanings. Logical

instructions are used to perform logical operations such as AND, OR,

SHIFT, COMPARE, and ROTATE. As the names indicate, these

instructions per-form, respectively, and, or, shift, compare, and rotate

operations on register or memory contents. Table 2.5 presents a

number of logical operations.

Sequencing Instructions

Control (sequencing) instructions are used to change the sequence in

which instructions are executed.

ADESINA O.B/CTE 214 Page 26

They take the form of CONDITIONAL BRANCHING

(CONDITIONAL JUMP), UNCONDITIONAL BRANCHING

(JUMP), or CALL instructions. A common characteristic among

these instructions is that their execution changes the program counter

(PC) value. The change made in the PC value can be unconditional,

for example, in the unconditional branching or the jump instructions.

In this case, the earlier value of the PC is lost and execution of the

program starts at a new value specified by the instruction. Consider,

for example, the instruction JUMP NEW-ADDRESS. Execution of

this instruction will cause the PC to be loaded with the memory

location represented by NEW-ADDRESS whereby the instruction

stored at this new address is executed. On the other hand,
TABLE 2.5 Some Common Logical Operations

Logical operation Meaning

AND Perform the logical ANDing of two operands

OR Perform the logical ORing of two operands

EXOR Perform the XORing of two operands

NOT Perform the complement of an operand

COMPARE Perform logical comparison of two operands and

 set flag accordingly

SHIFT Perform logical shift (right or left) of the content

 of a register

ROTATE Perform logical shift (right or left) with

 wraparound of the content of a register

TABLE 2.6 Examples of Condition Flags

Flag name Meaning

Negative (N) Set to 1 if the result of the most recent operation

 is negative, it is 0 otherwise

Zero (Z) Set to 1 if the result of the most recent operation

 is 0, it is 0 otherwise

Overflow (V) Set to 1 if the result of the most recent operation

 causes an overflow, it is 0 otherwise

Carry (C) Set to 1 if the most recent operation results in a

 carry, it is 0 otherwise

the change made in the PC by the branching instruction can be

conditional based on the value of a specific flag.

ADESINA O.B/CTE 214 Page 27

Examples of these flags include the Negative (N), Zero (Z),

Overflow (V), and Carry (C). These flags represent the individual

bits of a specific register, called the CONDITION CODE (CC)

REGISTER. The values of flags are set based on the results of

executing different instructions. The meaning of each of these flags is

shown in Table 2.6.

Consider, for example, the following group of instructions.

LOAD #100, R1

Loop: ADD (R2) þ , R0

DECREMENT R1

BRANCH-IF-GREATER-THAN Loop

The fourth instruction is a conditional branch instruction, which

indicates that if the result of decrementing the contents of register R1

is greater than zero, that is, if the Z flag is not set, and then the next

instruction to be executed is that labeled by Loop. It should be noted

that conditional branch instructions could be used to exe-cute

program loops (as shown above).

The CALL instructions are used to cause execution of the program

to transfer to a subroutine. A CALL instruction has the same effect as

that of the JUMP in terms of loading the PC with a new value from

which the next instruction is to be executed. However, with the

CALL instruction the incremented value of the PC (to point to the

next instruction in sequence) is pushed onto the stack. Execution of a

RETURN instruction in the subroutine will load the PC with the

popped value from the stack. This has the effect of resuming program

execution from the point where branching to the subroutine has

occurred. Figure 2.12 shows a program segment that uses the CALL

instruction. This pro-gram segment sums up a number of values, N,

and stores the result into memory location SUM. The values to be

added are stored in N consecutive memory locations starting at

NUM. The subroutine, called ADDITION, is used to perform the

actual addition of values while the main program stores the results in

SUM.

ADESINA O.B/CTE 214 Page 28

Figure 2.12 A program segment using a subroutine

Input / Output Instructions

Input and output instructions (I/O instructions) are used to transfer

data between the computer and peripheral devices. The two basic I/O

instructions used are the INPUT and OUTPUT instructions. The

INPUT instruction is used to transfer data from an input device to the

processor. Examples of input devices include a keyboard or a mouse.

Input devices are interfaced with a computer through dedicated input

ports. Computers can use dedicated addresses to address these ports.

Suppose that the input port through which a keyboard is connected to

a computer carries the unique address 1000. Therefore, execution of

the instruction INPUT 1000 will cause the data stored in a specific

register in the interface between the keyboard and the computer, call

it the input data register, to be moved into a specific register (called

the accumulator) in the computer. Similarly, the execution of the

instruction OUTPUT 2000 causes the data stored in the accumulator

to be moved to the data output register in the output device whose

address is 2000. Alternatively, the computer can address these ports

in the usual way of addressing memory locations.

ADESINA O.B/CTE 214 Page 29

In this case, the computer can input data from an input device by

executing an instruction such as MOVE Rin, R0. This instruction

moves the content of the register Rin into the register R0. Similarly,

the instruction MOVE R0, Rin moves the contents of register R0 into

the register Rin, that is, performs an output operation. This
TABLE 2.7 Some Transfer of Control Operations

Transfer of control operation Meaning

BRANCH-IF-CONDITION Transfer of control to a new address if condition is true

JUMP Unconditional transfer of control

CALL Transfer of control to a subroutine

RETURN Transfer of control to the caller routine

latter scheme is called memory-mapped Input/Output. Among the

advantages of memory-mapped I/O is the ability to execute a number

of memory-dedicated instructions on the registers in the I/O devices

in addition to the elimination of the need for dedicated I/O

instructions. Its main disadvantage is the need to dedicate part of the

memory address space for I/O devices.

CHAPTER 3

Processing Unit Design

In this chapter, we focus our attention on the main component of any

computer system, the central processing unit (CPU). The primary

function of the CPU is to execute a set of instructions stored in the

computer’s memory. A simple CPU consists of a set of registers, an

arithmetic logic unit (ALU), and a control unit (CU). In what

follows, the reader will be introduced to the organization and main

operations of the CPU.

CPU BASICS

A typical CPU has three major components: (1) register set, (2)

arithmetic logic unit (ALU), and (3) control unit (CU). The register

set differs from one computer architecture to another. It is usually a

combination of general-purpose and special-purpose registers.

General-purpose registers are used for any purpose, hence the name

general purpose.

ADESINA O.B/CTE 214 Page 30

Special-purpose registers have specific functions within the CPU. For

example, the program counter (PC) is a special-purpose register that

is used to hold the address of the instruction to be executed next.

Another example of special-purpose registers is the instruction

register (IR), which is used to hold the instruction that is currently

executed. The ALU provides the circuitry needed to perform the

arithmetic, logical and shift operations demanded of the instruction

set. In Chapter 4, we have covered a number of arithmetic operations

and circuits used to support computation in an ALU. The control unit

is the entity responsible for fetching the instruction to be executed

from the main memory and decoding and then executing it. Figure

5.1 shows the main components of the CPU and its interactions with

the memory system and the input/ output devices.

The CPU fetches instructions from memory, reads and writes data

from and to memory, and transfers data from and to input/output

devices.

Memory System

Instructions Data

CPU

ALU

Control Unit

Registers

Input / Output

Figure 5.1 Central processing unit main components and interactions with the memory and

I/O

ADESINA O.B/CTE 214 Page 31

A typical and simple execution cycle can be summarized as follows:

 The next instruction to be executed, whose address is obtained

from the PC, is fetched from the memory and stored in the IR.

 The instruction is decoded.

 Operands are fetched from the memory and stored in CPU

registers, if needed.

 The instruction is executed.

Results are transferred from CPU registers to the memory, if needed.

The execution cycle is repeated as long as there are more instructions

to execute. A check for pending interrupts is usually included in the

cycle. Examples of interrupts include I/O device request, arithmetic

overflow, or a page fault .When an interrupt request is encountered, a

transfer to an interrupt handling routine takes place. Interrupt

handling routines are programs that are invoked to collect the state of

the currently executing program, correct the cause of the interrupt,

and restore the state of the program.

The actions of the CPU during an execution cycle are defined by

micro-orders issued by the control unit. These micro-orders are

individual control signals sent over dedicated control lines. For

example, let us assume that we want to execute an instruction that

moves the contents of register X to register Y. Let us also assume

that both registers are connected to the data bus, D. The control unit

will issue a control signal to tell register X to place its contents on the

data bus D. After some delay, another control signal will be sent to

tell register Y to read from data bus D. The activation of the control

signals is determined using either hardwired control or

microprogramming.

REGISTER SET

Registers are essentially extremely fast memory locations within the

CPU that are used to create and store the results of CPU operations

and other calculations.

ADESINA O.B/CTE 214 Page 32

Different computers have different register sets. They differ in the

number of registers, register types, and the length of each register.

They also differ in the usage of each register. General-purpose

registers can be used for multiple purposes and assigned to a variety

of functions by the programmer.

Special-purpose registers are restricted to only specific functions. In

some cases, some registers are used only to hold data and cannot be

used in the calculations of operand addresses. The length of a data

register must be long enough to hold values of most data types. Some

machines allow two contiguous registers to hold double-length

values. Address registers may be dedicated to a particular addressing

mode or may be used as address general purpose. Address registers

must be long enough to hold the largest address. The number of

registers in a particular architecture affects the instruction set design.

A very small number of registers may result in an increase in

memory references. Another type of registers is used to hold

processor status bits, or flags. These bits are set by the CPU as the

result of the execution of an operation. The status bits can be tested at

a later time as part of another operation.

Memory Access Registers

Two registers are essential in memory write and read operations: the

memory data register (MDR) and memory address register (MAR).

The MDR and MAR are used exclusively by the CPU and are not

directly accessible to programmers.

In order to perform a write operation into a specified memory

location, the MDR and MAR are used as follows:

The word to be stored into the memory location is first loaded by the

CPU into MDR.

 The address of the location into which the word is to be stored is

loaded by the CPU into a MAR.

ADESINA O.B/CTE 214 Page 33

Instruction Fetching Registers

Two main registers are involved in fetching an instruction for

execution: the pro-gram counter (PC) and the instruction register

(IR). The PC is the register that contains the address of the next

instruction to be fetched. The fetched instruction is loaded in the IR

for execution. After a successful instruction fetch, the PC is updated

to point to the next instruction to be executed. In the case of a branch

operation, the PC is updated to point to the branch target instruction

after the branch is resolved, that is, the target address is known.

Condition Registers

Condition registers, or flags, are used to maintain status information.

Some architectures contain a special program status word (PSW)

register. The PSW contains bits that are set by the CPU to indicate

the current status of an executing program. These indicators are

typically for arithmetic operations, interrupts, memory protection

information, or processor status.

Special-Purpose Address Registers

Index Register, in index addressing, the address of the operand is

obtained by adding a constant to the content of a register, called the

index register. The index register holds an address displacement.

Index addressing is indicated in the instruction by including the name

of the index register in parentheses and using the symbol X to

indicate the constant to be added.

Segment Pointers support segmentation, the address issued by the

processor should consist of a segment number (base) and a

displacement (or an offset) within the segment. A segment register

holds the address of the base of the segment.

Stack Pointer is a data organization mechanism in which the last data

item stored is the first data item retrieved. Two specific operations

can be performed on a stack. These are the Push and the Pop

operations. A specific register, called the stack pointer (SP), is used

to indicate the stack location that can be addressed. In the stack push

operation, the SP value is used to indicate the location (called the top

of the stack). After storing (pushing) this value, the SP is

ADESINA O.B/CTE 214 Page 34

incremented (in some architectures, e.g. X86, the SP is decremented

as the stack grows low in memory).

DATAPATH

The CPU can be divided into a data section and a control section.

The data section, which is also called the datapath, contains the

registers and the ALU. The datapath is capable of performing certain

operations on data items. The control section is basically the control

unit, which issues control signals to the datapath. Internal to the

CPU, data move from one register to another and between ALU and

registers. Internal data movements are performed via local buses,

which may carry data, instructions, and addresses. Externally, data

move from registers to memory and I/O devices, often by means of a

system bus. Internal data movement among registers and between the

ALU and registers may be carried out using different organizations

including one-bus, two-bus, or three-bus organizations. Dedicated

datapaths may also be used between components that transfer data

between them-selves more frequently. For example, the contents of

the PC are transferred to the MAR to fetch a new instruction at the

beginning of each instruction cycle. Hence, a dedicated datapath

from the PC to the MAR could be useful in speeding up this part of

instruction execution.

One-Bus Organization

Using one bus, the CPU registers and the ALU use a single bus to

move outgoing and incoming data. Since a bus can handle only a

single data movement within one clock cycle, two-operand

operations will need two cycles to fetch the operands for the ALU.

Additional registers may also be needed to buffer data for the ALU.

This bus organization is the simplest and least expensive, but it limits

the amount of data transfer that can be done in the same clock cycle,

which will slow down the overall performance. Figure 5.3 shows a

one-bus datapath consisting of a set of general-purpose registers, a

memory address register (MAR), a memory data register (MDR), an

instruction register (IR), a program counter (PC), and an ALU.

ADESINA O.B/CTE 214 Page 35

Figure 5.3: One-bus datapath

Two-Bus Organization

Using two buses is a faster solution than the one-bus organization. In

this case, general-purpose registers are connected to both buses. Data

can be transferred from two different registers to the input point of

the ALU at the same time. Therefore, a two-operand operation can

fetch both operands in the same clock cycle. An additional buffer

register may be needed to hold the output of the ALU when the two

buses are busy carrying the two operands. Figure 5.4a shows a two-

bus organization. In some cases, one of the buses may be dedicated

for moving data into registers (in-bus), while the other is dedicated

for transferring data out of the registers (out-bus). In this case, the

additional buffer register may be used, as one of the ALU inputs, to

hold one of the operands. The ALU output can be connected directly

to the in-bus, which will transfer the result into one of the registers.

Figure 5.4b shows a two-bus organization with in-bus and out-bus.

ADESINA O.B/CTE 214 Page 36

Three-Bus Organization

In a three-bus organization, two buses may be used as source buses

while the third is used as destination. The source buses move data out

of registers (out-bus), and

Bus1

PC

IR

ALU

General

MAR

 Purpose

A

Registers

MDR

 Bus 2 Memory

 (a)

In-bus
 A

 PC

IR

 General MAR ALU

 Purpose

 Registers

MDR

Out-bus Memory Bus

(b)

Figure 5.4 Two-bus organizations. (a) An Example of Two-Bus Datapath. (b) Another

ADESINA O.B/CTE 214 Page 37

Example of Two-Bus Datapath with in-bus and out-bus

Figure 5.5: Three-bus datapath

the destination bus may move data into a register (in-bus). Each of

the two out-buses is connected to an ALU input point. The output of

the ALU is connected directly to the in-bus. As can be expected, the

more buses we have, the more data we can move within a single

clock cycle. However, increasing the number of buses will also

increase the complexity of the hardware. Figure 5.5 shows an

example of a three-bus datapath.

CPU Instruction Cycle

The sequence of operations performed by the CPU during its

execution of instructions is presented in Fig. 5.6. As long as there are

instructions to execute, the next instruction is fetched from main

memory. The instruction is executed based on the operation specified

in the opcode field of the instruction. At the completion of the

instruction execution, a test is made to determine whether an

interrupt has occurred. An interrupt handling routine needs to be

invoked in case of an interrupt.

ADESINA O.B/CTE 214 Page 38

Figure 5.6: CPU functions

The basic actions during fetching an instruction, executing an

instruction, or hand-ling an interrupt are defined by a sequence of

micro-operations. A group of control signals must be enabled in a

prescribed sequence to trigger the execution of a micro-operation. In

this section, we show the micro-operations that implement instruction

fetch, execution of simple arithmetic instructions, and interrupt

handling.

Fetch Instructions

The sequence of events in fetching an instruction can be summarized

as follows:

 The contents of the PC are loaded into the MAR.

 The value in the PC is incremented. (This operation can be done

in parallel with a memory access.)

 As a result of a memory read operation, the instruction is loaded

into the MDR.

 The contents of the MDR are loaded into the IR.

Let us consider the one-bus datapath organization shown in Fig. 5.3.

We will see that the fetch operation can be accomplished in three

steps as shown in the table below, where t0 , t1 , t2 . Note that multiple

operations separated by “;” imply that they are accomplished in

parallel.

ADESINA O.B/CTE 214 Page 39

Step Micro-operation

t
0 MAR (PC); A(PC)

t1 MDR Mem[MAR]; PC(A) þ 4

t
2 IR (MDR)

Using the three-bus datapath shown in Figure 5.5, the following table

shows the steps needed.

Step Micro-operation

t0 MAR (PC); PC(PC) þ 4

t
1 MDR Mem[MAR]

t
2 IR (MDR)

Execute Simple Arithmetic Operation

Add R1 , R2 , R0 This instruction adds the contents of source registers

R1 and R2 , and stores the results in destination register R0 . This

addition can be executed as follows:

 The registers R0 , R1 , R2 , are extracted from the IR.

 The contents of R1 and R2 are passed to the ALU for addition.

 The output of the ALU is transferred to R0 .

Using the one-bus datapath shown in Figure 5.3, this addition will

take three steps as shown in the following table, where t0 , t1 , t2 .

Step Micro-operation

t0 A (R1)

t1 B (R2)

t
2 R0 (A) þ (B)

Using the two-bus datapath shown in Figure 5.4a, this addition will

take two steps as shown in the following table, where t0 , t1 .

ADESINA O.B/CTE 214 Page 40

Step Micro-operation

t0 A(R1) þ (R2)

t1 R0(A)

Using the two-bus datapath with in-bus and out-bus shown in Figure

5.4b, this addition will take two steps as shown below, where t0 , t1 .

Step Micro-operation

t
0 A (R1)

t1 R0 (A) þ (R2)

Using the three-bus datapath shown in Figure 5.5, this addition will

take only one step as shown in the following table.

Step Micro-operation

t
0 R0(R1) þ (R2)

Add X, R0 This instruction adds the contents of memory location X

to register R0 and stores the result in R0 . This addition can be

executed as follows:

 The memory location X is extracted from IR and loaded into

MAR.

 As a result of memory read operation, the contents of X are

loaded into MDR.

 The contents of MDR are added to the contents of R0 .

Using the one-bus datapath shown in Figure 5.3, this addition will

take five steps as shown below, where t0 , t1 , t2 , t3 , t4 .

ADESINA O.B/CTE 214 Page 41

Step Micro-operation

t0 MAR X

t1 MDR Mem[MAR]

t
2 A (R0)

t
3 B (MDR)

t
4 R0 (A) þ (B)

Using the two-bus datapath shown in Figure 5.4a, this addition will

take four steps as shown below, where t0 , t1 , t2 , t3.

Step Micro-operation

t0 MAR X

t1 MDR Mem[MAR]

t
2 A (R0) þ (MDR)

t3 R0 (A)

Using the two-bus datapath with in-bus and out-bus shown in Figure

5.4b, this addition will take four steps as shown below, where t0 , t1 ,

t2 , t3 .

Step Micro-operation

t0 MAR X

t1 MDR Mem[MAR]

t
2 A (R0)

t
3 R0 (A) þ (MDR)

Using the three-bus datapath shown in Figure 5.5, this addition will

take three steps as shown below, where t0 , t1 , t2 .

Step Micro-operation

t
0 MAR X

t1 MDR Mem[MAR]

t2 R0 R0 þ (MDR)

ADESINA O.B/CTE 214 Page 42

Interrupt Handling

After the execution of an instruction, a test is performed to check for

pending inter-rupts. If there is an interrupt request waiting, the

following steps take place:

 The contents of PC are loaded into MDR (to be saved).

 The MAR is loaded with the address at which the PC contents

are to be saved.

 The PC is loaded with the address of the first instruction of the

interrupt hand-ling routine.

The contents of MDR (old value of the PC) are stored in

memory. The following table shows the sequence of events,

where t1 , t2 , t3 .

Step Micro-operation

t1 MDR (PC)

t2 MAR address1 (where to save old PC);

 PC address2 (interrupt handling routine)

t3 Mem[MAR] (MDR)

Control Unit

The control unit is the main component that directs the system

operations by sending control signals to the datapath. These signals

control the flow of data within the CPU and between the CPU and

external units such as memory and I/O. Control buses generally carry

signals between the control unit and other computer components in a

clock-driven manner. The system clock produces a continuous

sequence of pulses in a specified duration and frequency. A sequence

of steps t0 , t1 , t2 , . . . ,

ADESINA O.B/CTE 214 Page 43

Figure 5.7: Timing of control signals

(t0 , t1 , t2 ,
. . .) are used to execute a certain instruction. The op-code

field of a fetched instruction is decoded to provide the control signal

generator with information about the instruction to be executed. Step

information generated by a logic circuit module is used with other

inputs to generate control signals. The signal generator can be

specified simply by a set of Boolean equations for its output in terms

of its inputs. Figure 5.7 shows a block diagram that describes how

timing is used in generating control signals.

There are mainly two different types of control units: micro-

programmed and hardwired. In micro-programmed control, the

control signals associated with operations are stored in special

memory units inaccessible by the programmer as control words. A

control word is a microinstruction that specifies one or more micro-

operations. A sequence of microinstructions is called a

microprogram, which is stored in a ROM or RAM called a control

memory CM.

In hardwired control, fixed logic circuits that correspond directly to

the Boolean expressions are used to generate the control signals.

ADESINA O.B/CTE 214 Page 44

Clearly hardwired control is faster than micro-programmed control.

However, hardwired control could be very expensive and

complicated for complex systems. Hardwired control is more

economical for small control units.

It should also be noted that micro-programmed control could adapt

easily to changes in the system design. We can easily add new

instructions without changing hardware. Hardwired control will

require a redesign of the entire systems in the case of any change.

Hardwired Implementation

In hardwired control, a direct implementation is accomplished using

logic circuits. For each control line, one must find the Boolean

expression in terms of the input to the control signal generator as

shown in Figure 5.7. Let us explain the

Figure 5.9: Signals generated to execute Inst-x on one-bus datapath

during time period t0, t1, t2

implementation using a simple example. Assume that the instruction

set of a machine has the three instructions: Inst-x, Inst-y, and Inst-z;

and A, B, C, D, E, F, G, and H are control lines. The following table

shows the control lines that should be activated for the three

instructions at the three steps t0 , t1 , and t2 .
Step Inst-x Inst-y Inst-z

t0 D, B, E F, H, G E, H

t1 C, A, H G D, A, C

ADESINA O.B/CTE 214 Page 45

t2 G, C B, C

The Boolean expressions for control lines A, B, and C can be

obtained as follows:

A

B

C

Figure 5.10 shows the logic circuits for these control lines. Boolean

expressions for the rest of the control lines can be obtained in a

similar way. Figure 5.11 shows the state diagram in the execution

cycle of these instructions.

Micro-programmed Control Unit

The idea of micro-programmed control units was introduced by M.

V. Wilkes in the early 1950s. Microprogramming was motivated by

the desire to reduce the complexities involved with hardwired

control. As we studied earlier, an instruction is

A

 C

B

t2

Figure 5.10 Logic circuits for control lines A, B, and C

ADESINA O.B/CTE 214 Page 46

Figure 5.11xecution state diagram

implemented using a set of micro-operations. Associated with each

microoperation is a set of control lines that must be activated to carry

out the corresponding micro-operation. The idea of micro-

programmed control is to store the control signals associated with the

implementation of a certain instruction as a microprogram in a

special memory called a control memory (CM). A microprogram

consists of a sequence of microinstructions. A microinstruction is a

vector of bits, where each bit is a control signal, condition code, or

the address of the next microinstruction. Microinstructions are

fetched from CM the same way program instructions are fetched

from main memory (Fig. 5.12).

When an instruction is fetched from memory, the op-code field of the

instruc-tion will determine which microprogram is to be executed. In

other words, the op-code is mapped to a microinstruction address in

the control memory. The microinstruction processor uses that address

 Decode

Inst-x

 Inst-y Inst-z

t
0

t0

t0

D, B, E F, H, G E, H

t1

t1

t1

C, A, H G D, A, C

t2

t2

G, C B, C

ADESINA O.B/CTE 214 Page 47

to fetch the first microinstruction in the microprogram. After fetching

each microinstruction, the appropriate control lines will be enabled.

Every control line that corresponds to a “1” bit should be turned on.

Every control line that corresponds to a “0” bit should be left off.

After completing the execution of one microinstruction, a new

microinstruction will be fetched and executed. If the condition code

bits indicate that a branch must be taken, the next microinstruction is

specified in the address bits of the cur-rent microinstruction.

Otherwise, the next microinstruction in the sequence will be fetched

and executed.

When an instruction is fetched from memory, the op-code field of the

instruc-tion will determine which microprogram is to be executed. In

other words, the op-code is mapped to a microinstruction address in

the control memory. The microinstruction processor uses that address

to fetch the first microinstruction in the microprogram. After fetching

each microinstruction, the appropriate control lines will be enabled.

Every control line that corresponds to a “1” bit should be turned on.

Every control line that corresponds to a “0” bit should be left off.

After completing the execution of one microinstruction, a new

microinstruction will be fetched and executed. If the condition code

bits indicate that a branch must be taken, the next microinstruction is

specified in the address bits of the cur-rent microinstruction.

Otherwise, the next microinstruction in the sequence will be fetched

and executed.

The length of a microinstruction is determined based on the number

of micro-operations specified in the microinstructions, the way the

control bits will be interpreted, and the way the address of the next

microinstruction is obtained. A microinstruction may specify one or

more micro-operations that will be activated simultaneously. The

length of the microinstruction will increase as the number of parallel

micro-operations per microinstruction increases. Furthermore, when

each control bit in the microinstruction corresponds to exactly one

control line, the length of microinstruction could get bigger. The

length of a microinstruction could be reduced if control lines are

coded in specific fields in the microinstruction. Decoders will be

needed to map each field into the individual control lines. Clearly,

using the decoders will reduce the number of control lines that can be

ADESINA O.B/CTE 214 Page 48

activated simultaneously. There is a tradeoff between the length of

the microinstructions and the amount of parallelism. It is important

that we reduce the length of microinstructions to reduce the cost and

access time of the control memory. It may also be desirable that more

micro-operations be performed in parallel and more control lines can

be activated simultaneously.

Figure 5.12 Fetching microinstructions (control words)

Horizontal Versus Vertical Microinstructions Microinstructions can

be classified as horizontal or vertical. Individual bits in horizontal

microinstructions correspond to individual control lines. Horizontal

microinstructions are long and allow maximum parallelism since

each bit controls a single control line. In vertical microinstructions,

control lines are coded into specific fields within a microinstruction.

Decoders are needed to map a field of k bits to 2k possible com-

binations of control lines. For example, a 3-bit field in a

microinstruction could be used to specify any one of eight possible

lines. Because of the encoding, vertical microinstructions are much

shorter than horizontal ones. Control lines encoded in the same field

cannot be activated simultaneously. Therefore, vertical micro-

instructions allow only limited parallelism. It should be noted that no

decoding is needed in horizontal microinstructions while decoding is

necessary in the vertical case.

Example 3 Consider the three-bus datapath shown in Figure 5.5. In

addition to the PC, IR, MAR, and MDR, assume that there are 16

general-purpose registers numbered R0 – R15 . Also, assume that the

ALU supports eight functions (add, sub-tract, multiply, divide, AND,

OR, shift left, and shift right). Consider the add operation Add R1 ,

R2 , R0 , which adds the contents of source registers R1 , R2 , and

Control Control data

External Control Address

Sequencer

Memory Register

input

ADESINA O.B/CTE 214 Page 49

store the results in destination register R0 . In this example, we will

study the format of the microinstruction under horizontal

organization.

We will use horizontal microinstructions, in which there is a control

bit for each control line.

The format of the microinstruction should have control bits for the following:

 ALU operations

 Registers that output to out-bus1 (source 1)

 Registers that output to out-bus2 (source 2)

 Registers that input from in-bus (destination)

 Other operations that are not shown here

The following table shows the number of bits needed for ALU,

Source 1, Source 2, and destination:

Purpose Number of bits Explanations

ALU 8 bits 8 functions

Source 1 20 bits 16 general-purpose registers þ 4 special-

 purpose registers

Source 2 16 bits 16 general-purpose registers

Destination 20 bits 16 general-purpose registers þ 4 special-

 purpose registers

5.13 is the microinstruction for Add R1 , R2 , R0 on the three-bus datapath

Figure 5.13: Microinstruction for Add R1, R2, R0

ADESINA O.B/CTE 214 Page 50

CHAPTE 4

Memory System Design

Memory Hierarchy

A typical memory hierarchy starts with a small, expensive, and

relatively fast unit, called the cache, followed by a larger, less

expensive, and relatively slow main memory unit. Cache and main

memory are built using solid-state semiconductor material (typically

CMOS transistors). It is customary to call the fast memory level the

primary memory. The solid-state memory is followed by larger, less

expensive, and far slower magnetic memories that consist typically

of the (hard) disk and the tape. It is customary to call the disk the

secondary memory, while the tape is conventionally called the

tertiary memory. The objective behind designing a memory hierarchy

is to have a memory system that performs as if it consists entirely of

the fastest unit and whose cost is dominated by the cost of the

slowest unit.

The memory hierarchy can be characterized by a number of

parameters. Among these parameters are the access type, capacity,

cycle time, latency, bandwidth, and cost. The term access refers to

the action that physically takes place during a read or write oper-

ation. The capacity of a memory level is usually measured in bytes.

The cycle time is defined as the time elapsed from the start of a read

operation to the start of a subsequent read. The latency is defined as

the time interval between the request for information and the access

to the first bit of that information. The bandwidth provides a measure

of the number of bits per second that can be accessed. The cost of a

memory level is usually specified as dollars per megabytes. Figure

6.1 depicts a typical memory hierarchy. Table 6.1 provides typical

values of the memory hierarchy parameters.

The term random access refers to the fact that any access to any

memory location takes the same fixed amount of time regardless of

the actual memory location and/or the sequence of accesses that takes

place. For example, if a write operation to memory location 100 takes

15 ns and if this operation is followed by a read operation to memory

location 3000, then the latter operation will also take 15 ns.

ADESINA O.B/CTE 214 Page 51

This is to be compared to sequential access in which if access to

location 100 takes 500 ns, and if a consecutive access to location 101

takes 505 ns, then it is expected that an access to location 300 may

take 1500 ns. This is because the memory has to cycle through

locations 100 to 300, with each location requiring 5 ns.

The effectiveness of a memory hierarchy depends on the principle of

moving information into the fast memory infrequently and accessing

it many times before replacing it with new information. This

principle is possible due to a phenomenon called locality of

reference; that is, within a given period of time, programs tend to

reference a relatively confined area of memory repeatedly. There

exist two forms of locality: spatial and temporal locality. Spatial

locality refers to the

 CPU Registers

 Cache

Latency

 Main Memory Bandwidth

 Secondary Storage (Disk)

Speed
TertiaryStorage (Tape)

Cost per bit

Capacity (megabytes)

Figure 6.1 Typical memory hierarchy

ADESINA O.B/CTE 214 Page 52

phenomenon that when a given address has been referenced, it is

most likely that addresses near it will be referenced within a short

period of time, for example, consecutive instructions in a straightline

program. Temporal locality, on the other hand, refers to the

phenomenon that once a particular memory item has been referenced,

it is most likely that it will be referenced next, for example, an

instruction in a program loop.

The sequence of events that takes place when the processor makes a

request for an item is as follows. First, the item is sought in the first

memory level of the memory hierarchy. The probability of finding

the requested item in the first level is called the hit ratio, h1. The

probability of not finding (missing) the requested item in the first

level of the memory hierarchy is called the miss ratio, (1 2 h1). When

the requested item causes a “miss,” it is sought in the next subsequent

memory level. The probability of finding the requested item in the

second memory level, the hit ratio of the second level, is h2. The miss

ratio of the second memory level is (1 h2). The process is repeated

until the item is found. Upon finding the requested item, it is brought

and sent to the processor.

In a memory hierarchy that consists of three levels, the average

memory access time can be expressed as follows:

TABLE 6.1 Memory Hierarchy Parameters

 Access type Capacity Latency Bandwidth Cost/MB

CPU registers Random 64 – 1024 bytes 1 – 10 ns System clock High

 rate

Cache memory Random 8 – 512 KB 15 – 20 ns 10 – 20 MB/s $500

Main memory Random 16 – 512 MB 30 – 50 ns 1 – 2 MB/s $20 – 50

Disk memory Direct 1 – 20 GB 10 – 30 ms 1 – 2 MB/s $0.25

Tape memory Sequential 1 – 20 TB 30 – 10,000 ms 1 – 2 MB/s $0.025

ADESINA O.B/CTE 214 Page 53

The average access time of a memory level is defined as the time

required to access one word in that level. In this equation, t1, t2, t3

represent, respectively, the access times of the three levels.

Cache Memory

Cache memory owes its introduction to Wilkes back in 1965. At that

time, Wilkes distinguished between two types of main memory: The

conventional and the slave memory.

In Wilkes terminology, a slave memory is a second level of

unconventional high-speed memory, which nowadays corresponds to

what is called cache memory (the term cache means a safe place for

hiding or storing things).

The idea behind using a cache as the first level of the memory

hierarchy is to keep the information expected to be used more

frequently by the CPU in the cache

(a small high-speed memory that is near the CPU). The end result is

that at any given time some active portion of the main memory is

duplicated in the cache. Therefore, when the processor makes a

request for a memory reference, the request is first sought in the

cache. If the request corresponds to an element that is currently resid-

ing in the cache, we call that a cache hit. On the other hand, if the

request corre-sponds to an element that is not currently in the cache,

we call that a cache miss. A cache hit ratio, hc, is defined as the

probability of finding the requested element in the cache. A cache

miss ratio (1 hc) is defined as the probability of not finding the

requested element in the cache.

In the case that the requested element is not found in the cache, then

it has to be brought from a subsequent memory level in the memory

hierarchy. Assuming that the element exists in the next memory

level, that is, the main memory, then it has to be brought and placed

in the cache. In expectation that the next requested element will be

residing in the neighboring locality of the current requested element

(spatial locality), then upon a cache miss what is actually brought to

the main memory is a block of elements that contains the requested

element. The advantage of transferring a block from the main

memory to the cache will be most visible if it could be possible to

transfer such a block using one main memory access time.

ADESINA O.B/CTE 214 Page 54

Such a possibility could be achieved by increasing the rate at which

information can be transferred between the main memory and the

cache. One possible technique that is used to increase the bandwidth

is memory interleaving. To achieve best results, we can assume that

the block brought from the main memory to the cache, upon a cache

miss, consists of elements that are stored in different memory

modules, that is, whereby consecutive memory addresses are stored

in successive memory modules. Figure 6.2 illustrates the simple case

of a main memory consisting of eight memory modules. It is

assumed in this case that the block consists of 8 bytes.

Having introduced the basic idea leading to the use of a cache

memory, we would like to assess the impact of temporal and spatial

locality on the performance of the memory hierarchy. In order to

make such an assessment, we will limit our

M7 M6 M5 M4 M3 M2 M1 M0

Byte

Main memory

 Block

Cache

Figure 6.2 Memory interleaving using eight modules

ADESINA O.B/CTE 214 Page 55

deliberation to the simple case of a hierarchy consisting only of two

levels, that is, the cache and the main memory. We assume that the

main memory access time is tm and the cache access time is tc. We

will measure the impact of locality in terms of the average access

time, defined as the average time required to access an element (a

word) requested by the processor in such a two-level hierarchy.

Impact of Temporal Locality

In this case, we assume that instructions in program loops, which are

executed many times, for example, n times, once loaded into the

cache, are used more than once before they are replaced by new

instructions. The average access time, tav, is given by

In deriving the above expression, it was assumed that the requested

memory element has created a cache miss, thus leading to the

transfer of a main memory block in time tm. Following that, n

accesses were made to the same requested element, each taking tc.

The above expression reveals that as the number of repeated

accesses, n, increases, the average access time decreases, a desirable

feature of the memory hierarchy.

Impact of Spatial Locality

In this case, it is assumed that the size of the block transferred from

the main memory to the cache, upon a cache miss, is m elements. We

also assume that due to spatial locality, all m elements were

requested, one at a time, by the processor. Based on these

assumptions, the average access time, tav, is given by

ADESINA O.B/CTE 214 Page 56

In deriving the above expression, it was assumed that the requested

memory element has created a cache miss, thus leading to the

transfer of a main memory block, con-sisting of m elements, in time

tm. Following that, m accesses, each for one of the elements

constituting the block, were made. The above expression reveals that

as the number of elements in a block, m, increases, the average

access time decreases, a desirable feature of the memory hierarchy.

Cache Memory Organization

There are three main different organization techniques used for cache

memory. The three techniques are discussed below. These techniques

differ in two main aspects:

 The criterion used to place, in the cache, an incoming block from

the main memory.

 The criterion used to replace a cache block by an incoming block

(on cache full).

Direct Mapping This is the simplest among the three techniques. Its

simplicity stems from the fact that it places an incoming main

memory block into a specific fixed cache block location. The

placement is done based on a fixed relation between the incoming

block number, i, the cache block number, j, and the number of cache

blocks, N:

ADESINA O.B/CTE 214 Page 57

CHAPTER 5

Input–Output Design and Organization

Having considered the fundamental concepts related to instruction set

design, assembly language programming, processor design, and

memory design, we now turn our attention to the issues related to

input – output (I/O) design and organization. It should be emphasized

at the outset that I/O plays a crucial role in any modern computer

system. Therefore, a clear understanding and appreciation of the

fundamentals of I/O operations, devices, and interfaces are of great

importance.

Input – output (I/O) devices vary substantially in their characteristics.

One distinguishing factor among input devices (and also among

output devices) is their data processing rate, defined as the average

number of characters that can be processed by a device per second.

For example, while the data processing rate of an input device such

as the keyboard is about 10 characters (bytes)/second, a scanner can

send data at a rate of about 200,000 characters/second. Similarly,

while a laser printer can output data at a rate of about100,000

characters/second, a graphic display can output data at a rate of about

30,000,000 characters/second.

Striking a character on the keyboard of a computer will cause a

character (in the form of an ASCII code) to be sent to the computer.

The amount of time passed before the next character is sent to the

computer will depend on the skill of the user and even sometimes on

his/her speed of thinking. It is often the case that the user knows what

he/she wants to input, but sometimes they need to think before

touching the next button on the keyboard. Therefore, input from a

keyboard is slow and burst in nature and it will be a waste of time for

the computer to spend its valuable time waiting for input from slow

input devices. A mechanism is therefore needed whereby a device

will have to interrupt the processor asking for attention whenever it is

ready. This is called interrupt-driven communication between the

computer and I/O devices (see Section 8.3).

Consider the case of a disk. A typical disk should be capable of

transferring data at rates exceeding several million bytes/second.

ADESINA O.B/CTE 214 Page 58

It would be a waste of time to transfer data byte by byte or even word

by word. Therefore, it is always the case that data is transferred in the

form of blocks, that is, entire programs. It is also necessary to

provide a mechanism that allows a disk to transfer this huge volume

of data without the intervention of the CPU. This will allow the CPU

to perform other useful operation(s) while a huge amount of data is

being transferred between the disk and the memory.

Basic Concepts

Figure 8.1 shows a simple arrangement for connecting the processor

and the memory in a given computer system to an input device, for

example, a keyboard and an output device such as a graphic display.

A single bus consisting of the required address, data, and control

lines is used to connect the system’s components in Figure 8.1.

We are here concerned with the way the processor and the I/O

devices exchange data. It has been indicated in the introduction part

that there exists a big difference in the rate at which a processor can

process information and those of input and output devices. One

simple way to accommodate this speed difference is to have the input

device, for example, a keyboard, deposit the character struck by the

user in a register (input register), which indicates the avail-ability of

that character to the processor. When the input character has been

taken by the processor, this will be indicated to the input device in

order to proceed and input the next character, and so on. Similarly,

when the processor has a character to output (display), it deposits it

in a specific register dedicated for communication with the graphic

display (output register). When the character has been taken by the

graphic display, this will be indicated to the processor such that it can

proceed and output the next character, and so on. This simple way of

communication between the processor and I/O devices, called I/O

protocol, requires the availability of the input and output registers. In

a typical computer system, there is a number of input registers, each

belonging to a specific input device. There is also a number of output

registers,

ADESINA O.B/CTE 214 Page 59

Processor Memory

System Bus

Input Device Output Device

(Keyboard) (Graphic Display)

Figure: 8.1 A single bus system

each belonging to a specific output device. In addition, a mechanism

according to which the processor can address those input and output

registers must be adopted. More than one arrangement exists to

satisfy the abovementioned requirements. Among these, two

particular methods are explained below.

In the first arrangement, I/O devices are assigned particular

addresses, isolated from the address space assigned to the memory.

The execution of an input instruc-tion at an input device address will

cause the character stored in the input register of that device to be

transferred to a specific register in the CPU. Similarly, the execution

of an output instruction at an output device address will cause the

char-acter stored in a specific register in the CPU to be transferred to

the output register of that output device. This arrangement, called

shared I/O, is shown schematically in Figure 8.2. In this case, the

address and data lines from the CPU can be shared between the

memory and the I/O devices. A separate control line will have to be

used. This is because of the need for executing input and output

instructions. In a typical computer system, there exists more than one

input and more than one output device. Therefore, there is a need to

have address decoder circuitry for device identification. There is also

a need for status registers for each input and output device. The status

of an input device, whether it is ready to send data to the processor,

ADESINA O.B/CTE 214 Page 60

should be stored in the status register of that device. Similarly, the

status of an output device, whether it is ready to receive data from the

processor, should be stored in the status register of that device. Input

(output) registers, status registers, and address decoder circuitry

represent the main components of an I/O interface (module).

Address Bus

Data Bus

 Memory Control lines

Input Device

 (Keyboard)

 Input Device(s) Control Lines

Output Device(s) Control Lines Output Device

(Graphic Display)

Figure 8.2 Shared I/O arrangement

The main advantage of the shared I/O arrangement is the separation

between the memory address space and that of the I/O devices. Its

main disadvantage is the need to have special input and output

instructions in the processor instruction set. The shared I/O

arrangement is mostly adopted by Intel.

The second possible I/O arrangement is to deal with input and output

registers as if they are regular memory locations. In this case, a read

operation from the address corresponding to the input register of an

input device, for example, Read Device 6, is equivalent to

performing an input operation from the input register in Device #6.

Similarly, a write operation to the address corresponding to the

Processor

Memory

ADESINA O.B/CTE 214 Page 61

output register of an output device, for example, Write Device 9, is

equivalent to performing an output operation into the output register

in Device #9. This arrangement is called memory-mapped I/O. It is

shown in Figure 8.3.

The main advantage of the memory-mapped I/O is the use of the read

and write instructions of the processor to perform the input and

output operations, respectively. It eliminates the need for introducing

special I/O instructions. The main disadvantage of the memory-

mapped I/O is the need to reserve a certain part of the memory

address space for addressing I/O devices, that is, a reduction in the

available memory address space. The memory-mapped I/O has been

mostly adopted by Motorola.

ADESINA O.B/CTE 214 Page 62

Interrupt-Driven I/O

It is often necessary to have the normal flow of a program

interrupted, for example, to react to abnormal events, such as power

failure. An interrupt can also be used to acknowledge the completion

of a particular course of action, such as a printer indicating to the

computer that it has completed printing the character(s) in its input

register and that it is ready to receive other character(s). An interrupt

can also be used in time-sharing systems to allocate CPU time among

different programs. The instruction sets of modern CPUs often

include instruction(s) that mimic the actions of the hardware

interrupts.

When the CPU is interrupted, it is required to discontinue its current

activity, attend to the interrupting condition (serve the interrupt), and

then resume its activity from wherever it stopped. Discontinuity of

the processor’s current activity requires finishing executing the

current instruction, saving the processor status (mostly in the form of

pushing register values onto a stack), and transferring control (jump)

to what is called the interrupt service routine (ISR). The service

offered to an interrupt will depend on the source of the interrupt. For

example, if the interrupt is due to power failure, then the action taken

will be to save the values of all processor registers and pointers such

that resumption of correct operation can be guaranteed upon power

return. In the case of an I/O interrupt, serving an interrupt means to

perform the required data transfer. Upon finishing serving an

interrupt, the processor should restore the original status by popping

the relevant values from the stack. Once the processor returns to the

normal state, it can enable sources of interrupt again.

One important point that was overlooked in the above scenario is the

issue of serving multiple interrupts, for example, the occurrence of

yet another interrupt while the processor is currently serving an

interrupt. Response to the new interrupt will depend upon the priority

of the newly arrived interrupt with respect to that of the interrupt

being currently served. If the newly arrived interrupt has priority less

than or equal to that of the currently served one, then it can wait until

the processor finishes serving the current interrupt. If, on the other

hand, the newly arrived interrupt has priority higher than that of the

currently served interrupt, for example, power failure interrupt

ADESINA O.B/CTE 214 Page 63

occurring while serving an I/O interrupt, then the processor will have

to push its status onto the stack and serve the higher priority

interrupt. Correct handling of multiple interrupts in terms of storing

and restoring the correct processor status is guaranteed due to the

way the push and pop operations are performed.

For example, to serve the first interrupt, STATUS 1 will be pushed

onto the stack. Upon receiving the second interrupt, STATUS 2 will

be pushed onto the stack. Upon serving the second interrupt,

STATUS 2 will be popped out of the stack and upon serving the first

interrupt, STATUS 1 will be popped out of the stack.

It is possible to have the interrupting device identify itself to the

processor by sending a code following the interrupt request. The code

sent by a given I/O device can represent its I/O address or the

memory address location of the start of the ISR for that device. This

scheme is called vectored interrupt.

Interrupt Hardware

In the above discussion, we have assumed that the processor has

recognized the occurrence of an interrupt before proceeding to serve

it. Computers are provided with interrupt hardware capability in the

form of specialized interrupt lines to the processor. These lines are

used to send interrupt signals to the processor. In the case of I/O,

there exists more than one I/O device. The processor should be pro-

vided with a mechanism that enables it to handle simultaneous

interrupt requests and to recognize the interrupting device. Two basic

schemes can be implemented to achieve this task. The first scheme is

called daisy chain bus arbitration (DCBA) and the second is called

independent source bus arbitration (ISBA).

Interrupt in Operating Systems

When an interrupt occurs, the operating system gains control. The

operating system saves the state of the interrupted process, analyzes

the interrupt, and passes control to the appropriate routine to handle

the interrupt. There are several

ADESINA O.B/CTE 214 Page 64

Figure 8.6 Interrupt hardware schemes. (a) Daisy chain interrupt arrangement (b)

Independent interrupt arrangement

types of interrupts, including I/O interrupts. An I/O interrupt notifies

the operating system that an I/O device has completed or suspended

its operation and needs some service from the CPU. To process an

interrupt, the context of the current process must be saved and the

interrupt handling routine must be invoked. This process is called

context switching. A process context has two parts: processor context

and memory context. The processor context is the state of the CPU’s

registers including program counter (PC), program status words

(PSWs), and other registers. The memory context is the state of the

program’s memory including the program and data. The interrupt

handler is a routine that processes each different type of interrupt.

The operating system must provide programs with save area for their

contexts. It also must provide an organized way for allocating and

de-allocating memory for the interrupted process. When the interrupt

handling routine finishes processing the interrupt, the CPU is

dispatched to either the interrupted process, or to the highest priority

ready process. This will depend on whether the interrupted process is

preemptive or non-preemptive. If the process is non-preemptive, it

gets the CPU again. First the con-text must be restored, then control

is returned to the interrupts process.

ADESINA O.B/CTE 214 Page 65

Figure 8.7 Layered I/O software

Figure 8.7 shows the layers of software involved in I/O operations.

First, the pro-gram issues an I/O request via an I/O call. The request

is passed through to the I/O device. When the device completes the

I/O, an interrupt is sent and the interrupt handler is invoked.

Eventually, control is relinquished back to the process that initiated

the I/O.

Direct Memory Access (DMA)

The main idea of direct memory access (DMA) is to enable

peripheral devices to cut out the “middle man” role of the CPU in

data transfer. It allows peripheral devices to transfer data directly

from and to memory without the intervention of the CPU. Having

peripheral devices access memory directly would allow the CPU to

do other work, which would lead to improved performance,

especially in the cases of large transfers.

The DMA controller is a piece of hardware that controls one or more

peripheral devices. It allows devices to transfer data to or from the

system’s memory without the help of the processor. In a typical

DMA transfer, some event notifies the DMA controller that data

needs to be transferred to or from memory. Both the DMA and CPU

use memory bus and only one or the other can use the memory at the

same time. The DMA controller then sends a request to the CPU

asking its permission to use the bus. The CPU returns an

acknowledgment to the DMA controller granting it bus access. The

ADESINA O.B/CTE 214 Page 66

DMA can now take control of the bus to independently conduct

memory transfer. When the transfer is complete the DMA

relinquishes its control of the bus to the CPU. Processors that support

DMA provide one or more input signals that the bus requester can

assert to gain control of the bus and one or more output signals that

the CPU asserts to indicate it has relinquished the bus. Figure 8.10

shows how the DMA controller shares the CPU’s memory bus.

Figure 8.1:DMA controller shares the CPU’s memory bus

Direct memory access controllers require initialization by the CPU. Typical setup

parameters include the address of the source area, the address of the destination

area, the length of the block, and whether the DMA controller should generate a

processor interrupt once the block transfer is complete. A DMA controller has an

address register, a word count register, and a control register. The address register

contains an address that specifies the memory location of the data to be transferred.

It is typically possible to have the DMA controller automatically increment the

address register after each word transfer, so that the next transfer will be from the

next memory location. The word count register holds the number of words to be

transferred. The word count is decremented by one after each word transfer. The

control register specifies the transfer mode.

Direct memory access data transfer can be performed in burst mode or single-cycle

mode.

ADESINA O.B/CTE 214 Page 67

 In burst mode, the DMA controller keeps control of the bus until all the data has

been transferred to (from) memory from (to) the peripheral device. This mode of

transfer is needed for fast devices where data transfer cannot be stopped until the

entire transfer is done. In single-cycle mode (cycle stealing), the DMA controller

relinquishes the bus after each transfer of one data word. This minimizes the

amount of time that the DMA controller keeps the CPU from controlling the bus,

but it requires that the bus request/acknowledge sequence be performed for every

single transfer. This overhead can result in a degradation of the performance. The

single-cycle mode is preferred if the system cannot tolerate more than a few cycles

of added interrupt latency or if the peripheral devices can buffer very large

amounts of data, causing the DMA controller to tie up the bus for an excessive

amount of time.

The following steps summarize the DMA operations:

 DMA controller initiates data transfer.

 Data is moved (increasing the address in memory, and reducing the count of

words to be moved).

 When word count reaches zero, the DMA informs the CPU of the termination

by means of an interrupt.

 The CPU regains access to the memory bus.

A DMA controller may have multiple channels. Each channel has

associated with it an address register and a count register. To initiate

a data transfer the device driver sets up the DMA channel’s address

and count registers together with the direction of the data transfer,

read or write. While the transfer is taking place, the CPU is free to do

other things. When the transfer is complete, the CPU is interrupted.

Direct memory access channels cannot be shared between device

drivers. A device driver must be able to determine which DMA

channel to use. Some devices have a fixed DMA channel, while

others are more flexible, where the device driver can simply pick a

free DMA channel to use.

Linux tracks the usage of the DMA channels using a vector of

dma_chan data structures (one per DMA channel). The dma_chan

data structure contains just two fields, a pointer to a string describing

the owner of the DMA channel and a flag indicating if the DMA

channel is allocated or not.

BUSES

ADESINA O.B/CTE 214 Page 68

A bus in computer terminology represents a physical connection used

to carry a signal from one point to another. The signal carried by a

bus may represent address, data, control signal, or power. Typically,

a bus consists of a number of connections running together. Each

connection is called a bus line. A bus line is normally identified by a

number. Related groups of bus lines are usually identified by a name.

For example, the group of bus lines 1 to 16 in a given computer

system may be used to carry the address of memory locations, and

therefore are identified as address lines. Depending on the signal

carried, there exist at least four types of buses: address, data, control,

and power buses. Data buses carry data, control buses carry control

signals, and power buses carry the power-supply/ground voltage. The

size (number of lines) of the address, data, and control bus varies

from one system to another. Consider, for example, the bus

connecting a CPU and memory in a given system, called the CPU

bus. The size of the memory in that system is 512M-word and each

word is 32 bits. In such system, the size of the address bus should be

log2(512 220) ¼ 29 lines, the size of the data bus should be 32 lines,

and at least one control line (R W) should exist in that system.

In addition to carrying control signals, a control bus can carry timing

signals. These are signals used to determine the exact timing for data

transfer to and from a bus; that is, they determine when a given

computer system component, such as the processor, memory, or I/O

devices, can place data on the bus and when they can receive data

from the bus. A bus can be synchronous if data transfer over the bus

is controlled by a bus clock. The clock acts as the timing reference

for all bus signals. A bus is asynchronous if data transfer over the bus

is based on the avail-ability of the data and not on a clock signal.

Data is transferred over an asynchronous bus using a technique called handshaking.

The operations of synchronous and asynchronous buses are explained below.

To understand the difference between synchronous and

asynchronous, let us consider the case when a master such as a CPU

or DMA is the source of data to be transferred to a slave such as an

I/O device. The following is a sequence of events involving the

master and slave:

 Master: send request to use the bus

ADESINA O.B/CTE 214 Page 69

 Master: request is granted and bus is allocated to master

 Master: place address/data on bus

 Slave: slave is selected

 Master: signal data transfer

 Slave: take data

 Master: free the bus

 Synchronous Buses

In synchronous buses, the steps of data transfer take place at fixed

clock cycles. Everything is synchronized to bus clock and clock

signals are made available to both master and slave. The bus clock is

a square wave signal. A cycle starts at one rising edge of the clock

and ends at the next rising edge, which is the beginning of the next

cycle. A transfer may take multiple bus cycles depending on the

speed parameters of the bus and the two ends of the transfer.

One scenario would be that on the first clock cycle, the master puts

an address on the address bus, puts data on the data bus, and asserts

the appropriate control lines. Slave recognizes its address on the

address bus on the first cycle and reads the new value from the bus in

the second cycle.

Synchronous buses are simple and easily implemented. However,

when connecting devices with varying speeds to a synchronous bus,

the slowest device will deter-mine the speed of the bus. Also, the

synchronous bus length could be limited to avoid clock-skewing

problems.

 Asynchronous Buses

There are no fixed clock cycles in asynchronous buses. Handshaking

is used instead. Figure 8.11 shows the handshaking protocol. The

master asserts the data-ready line

ADESINA O.B/CTE 214 Page 70

Data-Bus

Data

Data

Data

Data-ready 1

3 1

3

Data-accept 2

4 2

4

Figure 8.11 Asynchronous bus timing using handshaking protocol

(point 1 in the figure) until it sees a data-accept signal. When the

slave sees a data-ready signal, it will assert the data-accept line (point

2 in the figure). The rising of the data-accept line will trigger the

falling of the data-ready line and the removal of data from the bus.

The falling of the data-ready line (point 3 in the figure) will trigger

the falling of the data-accept line (point 4 in the figure). This

handshaking, which is called fully interlocked, is repeated until the

data is completely transferred. Asynchronous bus is appropriate for

different speed devices.

ADESINA O.B/CTE 214 Page 71

 INPUT –OUTPUT INTERFACES

An interface is a data path between two separate devices in a computer system. Inter-

face to buses can be classified based on the number of bits that are transmitted at a

given time to serial versus parallel ports. In a serial port, only 1 bit of data is trans-

ferred at a time. Mice and modems are usually connected to serial ports. A parallel port

allows more than 1 bit of data to be processed at once. Printers are the most common

peripheral devices connected to parallel ports. Table 8.4 shows a summary of the

variety of buses and interfaces used in personal computers.

TABLE 8.4 Descriptions of Buses and Interfaces Used in Personal Computers

Bus/Interface Description

PS/2 A type of port (or interface) that can be used to connect mice and

 keyboards to the computer. The PS/2 port is sometimes called the

 mouse port.

Industry standard ISA was originally an 8-bit bus and later expanded to a 16-bit bus in

architecture (ISA) 1984. In 1993, Intel and Microsoft introduced a plug and play

 ISA bus that allowed the computer to automatically detect and set

 up computer ISA peripherals such as a modem or sound card.

Extended industry EISA is an enhanced form of ISA, which allows for 32-bit data

standard transfers, while maintaining support for 8- and 16-bit expansion

architecture boards. However, its bus speed, like ISA, is only 8 MHz. EISA is

(EISA) not widely used, due to its high cost and complicated nature.

Micro channel MCA was introduced by IBM in 1987. It offered several additional

architecture features over the ISA such as a 32-bit bus, automatically

(MCA) configured cards and bus mastering for greater efficiency. It is

 slightly superior to EISA, but not many expansion boards were

 ever made to fit MCA specifications.

VESA (Video The VESA, a nonprofit organization founded by NEC, released the

electronics VLB in 1992. It is a 32-bit bus that had direct access to the system

standards memory at the speed of the processor, commonly the 486 CPU

association) local (33/40 MHz). VLB 2.0 was later released in 1994 and had a

bus (VLB) 64-bit bus and a bus speed of 50 MHz.

Peripheral PCI was introduced by Intel in 1992, revised in 1993 to version 2.0,

component and later revised in 1995 to PCI 2.1. It is a 32-bit bus that is also

interconnect (PCI) available as a 64-bit bus today. Many modern expansion boards

 are connected to PCI slots.

Advanced graphic AGP was introduced by Intel in 1997. AGP is a 32-bit bus designed for

port (AGP) the high demands of 3D graphics. AGP has a direct line to memory,

 which allows 3D elements to be stored in the system memory

 instead of the video memory. AGP is geared towards data-intensive

 graphics cards, such as 3D accelerators; its design allows for data

 throughput at rates of 266 MB/s.

ADESINA O.B/CTE 214 Page 72

TABLE 8.4 Continued

Bus/Interface Description

Universal serial bus USB is an external bus developed by Intel, Compaq, DEC, IBM,

(USB) Microsoft, NEC and Northern Telcom. It was released in 1996 with

 the Intel 430HX Triton II Mother Board. USB has the capability of

 transferring 12 Mbps, supporting up to 127 devices. Many devices

 can be connected to USB ports, which support plug and play.

FireWire (IEEE FireWire is a type of external bus, which supports very fast transfer

1394) rates: 400 Mbps. Because of this, FireWire is suitable for

 connecting video devices, such as VCRs, to the computer.

Small computer SCSI is a type of parallel interface that is commonly used for mass

system interface storage devices. SCSI can transfer data at rates of 4 MB/s; in

(SCSI) addition, there are several varieties of SCSI that support higher

 speeds: Fast SCSI (10 MB/s), Ultra SCSI and Fast Wide SCSI

 (20 MB/s), as well as Ultra Wide SCSI (40 MB/s).

Integrated drive IDE is a commonly used interface for hard disk drives and

electronics (IDE) CD-ROM drives. It is less expensive than SCSI, but offers

 slightly less in terms of performance.

Enhanced integrated EIDE is an improved version of IDE, which offers better

drive electronics performance than standard SCSI. It offers transfer rates between

(EIDE) 4 and 16.6 MB/s.

PCI-X PCI-X is a high performance bus that is designed to meet the

 increased I/O demands of technologies such as Fibre Channel,

 Gigabit Ethernet, and Ultra3 SCSI.

Communication and CNR was introduced by Intel in 2000. It is a specification that

network riser supports audio, modem USB and local area networking interfaces

(CNR) of core logic chipsets.

SUMMARY

One of the major features in a computer system is its ability to exchange data with other

devices and to allow the user to interact with the system. This chapter focused on the

I/O system and the way the processor and the I/O devices exchange data in a computer

system. The chapter described three ways of organizing I/O: programmed I/O,

interrupt-driven I/O, and DMA. In programmed I/O, the CPU handles the transfers,

which take place between registers and the devices. In interrupt-driven I/O, CPU

handles data transfers and an I/O module is running concurrently. In DMA, data are

transferred between memory and I/O devices without intervention of the CPU. We also

studied two methods for synchronization: polling and interrupts. In polling, the

processor polls the device while waiting for I/O to complete. Clearly processor cycles

ADESINA O.B/CTE 214 Page 73

are wasted in this method. Using interrupts, processors are free to switch to other tasks

during I/O. Devices assert interrupts when I/O is complete. Interrupts incurs some

delay penalty. Two examples of interrupt handling were covered: 80 86 family and

ARM. The chapter also covered buses and interfaces. A wide variety of interfaces

and buses used in personal computers are summarized.

ADESINA O.B/CTE 214 Page 74

CHAPTER 6

Pipelining Design Techniques

There exist two basic techniques to increase the instruction execution rate of a

processor. These are to increase the clock rate, thus decreasing the instruction

execution time, or alternatively to increase the number of instructions that can be

executed simultaneously. Pipelining and instruction-level parallelism are examples

of the latter technique. Pipelining owes its origin to car assembly lines. The idea is

to have more than one instruction being processed by the processor at the same

time. Similar to the assembly line, the success of a pipeline depends upon dividing

the execution of an instruction among a number of subunits (stages), each perform-

ing part of the required operations. A possible division is to consider instruction

fetch (F), instruction decode (D), operand fetch (F), instruction execution (E), and

store of results (S) as the subtasks needed for the execution of an instruction. In this

case, it is possible to have up to five instructions in the pipeline at the same time,

thus reducing instruction execution latency. In this Chapter, we discuss the basic

concepts involved in designing instruction pipelines. Performance measures of a

pipeline are introduced. The main issues contributing to instruction pipeline

hazards are discussed and some possible solutions are introduced. In addition, we

introduce the concept of arithmetic pipelining together with the problems involved

in designing such a pipeline. Our coverage concludes with a review of a recent

pipeline processor.

GENERAL CONCEPTS

Pipelining refers to the technique in which a given task is divided into a number of

subtasks that need to be performed in sequence. Each subtask is performed by a

given functional unit. The units are connected in a serial fashion and all of them

operate simultaneously. The use of pipelining improves the performance compared

to the traditional sequential execution of tasks. Figure 9.1 shows an illustration of

the basic difference between executing four subtasks of a given instruction (in this

case fetching F, decoding D, execution E, and writing the results W) using

pipelining and sequential processing.

ADESINA O.B/CTE 214 Page 75

I1

 I2

I3

 F1 D1 E1 W1 F2 D2 E2

W

2 F3 D3 E3 W3

 (a) Sequential Processing

I1

 F1 D1 E1 W1

I2

 F2 D2 E2 W2

I3

 F3 D3 E3 W3
Time

1 2

3 4

5 6

7 8

9 10 11 12

 (b) Pipelining

Figure 9.1 Pipelining versus sequential processing

It is clear from the figure that the total time required to process three instructions

(I1, I2, I3) is only six time units if four-stage pipelining is used as compared to 12

time units if sequential processing is used. A possible saving of up to 50% in the

execution time of these three instructions is obtained. In order to formulate some

performance measures for the goodness of a pipeline in processing a series of tasks,

a space time chart (called the Gantt’s chart) is used. The chart shows the suc-

cession of the subtasks in the pipe with respect to time. Figure 9.2 shows a Gantt’s

chart. In this chart, the vertical axis represents the subunits (four in this case) and

the horizontal axis represents time (measured in terms of the time unit required for

each unit to perform its task). In developing the Gantt’s chart, we assume that the

time (T) taken by each subunit to perform its task is the same; we call this the unit

time.

As can be seen from the figure, 13 time units are needed to finish executing 10

instructions (I1 to I10). This is to be compared to 40 time units if sequential proces-

sing is used (ten instructions each requiring four time units).

In the following analysis, we provide three performance measures for the good-

ness of a pipeline. These are the Speed-up S(n), Throughput U(n), and Efficiency

E(n). It should be noted that in this analysis we assume that the unit time T ¼ t

units.

 Speed-up S(n) Consider the execution of m tasks (instructions) using n-stages

(units) pipeline. As can be seen, n þ m 1 time units are required

ADESINA O.B/CTE 214 Page 76

U4 I1 I2 I3 I4 I5 I6 I7 I8 I9
I

10

U3 I1 I2 I3 I4 I5 I6 I7 I8 I9
I

10

U2 I1 I2 I3 I4 I5 I6 I7 I8 I9
I

10

U1 I1 I2 I3 I4 I5 I6 I7 I8 I9
I

10

 1 2 3 4 5 6 7 8 9 10 11 12 13 Time

Figure 9.2 The space – time chart (Gantt chart)

INSTRUCTION PIPELINE

The simple analysis made in Section 9.1 ignores an important aspect that can affect

the performance of a pipeline, that is, pipeline stall. A pipeline operation is said to

have been stalled if one unit (stage) requires more time to perform its function, thus

forcing other stages to become idle. Consider, for example, the case of an

instruction fetch that incurs a cache miss. Assume also that a cache miss requires

three extra time units. Figure 9.3 illustrates the effect of having instruction I2

incurring a cache miss (assuming the execution of ten instructions I1 to I10).

U4 I1 I2 I3 I4 I5 I6 I7 I8 I9
I

10

U3 I1 I2 I3 I4 I5 I6 I7 I8 I9
I

10

U2 I1 I2 I3 I4 I5 I6 I7 I8 I9
I

10

U1 I1 I2 I3 I4 I5 I6 I7 I8 I9
I

10

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 9.3 Effect of a cache miss on the pipeline

ADESINA O.B/CTE 214 Page 77

The figure shows that due to the extra time units needed for instruction I2 to be

fetched, the pipeline stalls, that is, fetching of instruction I3 and subsequent

instructions are delayed. Such situations create what is known as pipeline bubble (or

pipe-line hazards). The creation of a pipeline bubble leads to wasted unit times, thus

leading to an overall increase in the number of time units needed to finish executing

a given number of instructions. The number of time units needed to execute the 10

instructions shown in Figure 9.3 is now 16 time units, compared to 13 time units if

there were no cache misses.

Pipeline hazards can take place for a number of other reasons. Among these are

instruction dependency and data dependency. These are explained below.

Methods Used to Prevent Fetching the Wrong Instruction or Operand

Use of NOP (No Operation) This method can be used in order to prevent the fetching

of the wrong instruction, in case of instruction dependency, or fetching the wrong

operand, in case of data dependency. Recall Example 1. In that example, the

execution of a sequence of ten instructions I1 –I10 on a pipeline consisting of four

pipeline stages: IF, ID, IE, and IS were considered. In order to show the execution of

these instructions in the pipeline, we have assumed that when the branch instruction

is fetched, the pipeline stalls until the result of executing the branch instruction is

stored. This assumption was needed in order to prevent fetching the wrong

instruction after fetching the branch instruction. In real-life situations, a mechanism

is needed to guarantee fetching the appropriate instruction at the appropriate time.

Insertion of “NOP” instructions will help carrying out this task. A “NOP” is an

instruction that has no effect on the status of the processor.

ADESINA O.B/CTE 214 Page 78

CHAPTER 7

Reduced Instruction Set Computers (RISCs)

RISC/CISC EVOLUTION CYCLE

The term RISCs stands for Reduced Instruction Set Computers. It was originally

introduced as a notion to mean architectures that can execute as fast as one

instruction per clock cycle. RISC started as a notion in the mid-1970s and has even-

tually led to the development of the first RISC machine, the IBM 801 minicomputer.

The launching of the RISC notion announces the start of a new paradigm in the

design of computer architectures. This paradigm promotes simplicity in computer

architecture design. In particular, it calls for going back to basics rather than

providing extra hardware support for high-level languages. This paradigm shift

relates to what is known as the semantic gap, a measure of the difference between

the operations provided in the high-level languages (HLLs) and those provided in

computer architectures.

It is recognized that the wider the semantic gap, the larger the number of undesirable

consequences. These include (a) execution inefficiency, (b) excessive machine pro-gram

size, and (c) increased compiler complexity. Because of these expected conse-quences,

the conventional response of computer architects has been to add layers of complexity to

newer architectures.

These include increasing the number and complexity of instructions together with

increasing the number of addressing modes. The architectures resulting from the adoption

of this “add more complexity” are now known as Complex Instruction Set Computers

(CISCs). However, it soon became apparent that a complex instruction set has a number

of disadvantages. These include a complex instruction decoding scheme, an increased

size of the control unit, and increased logic delays. These drawbacks prompted a team of

computer architects to adopt the principle of “less is actually more.” A number of studies

were then conducted to investigate the impact of complexity on performance. These are

discussed below.

RISCs DESIGN PRINCIPLES

A computer with the minimum number of instructions has the disadvantage that a large

number of instructions will have to be executed in realizing even a simple function. This

will result in a speed disadvantage. On the other hand, a computer with an inflated

number of instructions has the disadvantage of complex decoding and hence a speed

disadvantage. It is then natural to believe that a computer with a carefully selected

reduced set of instructions should strike a balance between the above two design

alternatives. The question then becomes what constitutes a carefully selected reduced set

of instructions? In order to arrive at an answer to this question, it is necessary to conduct

in-depth studies on a number of aspects of computation. These aspects should include (a)

operations that are most frequently performed during execution of typical (benchmark)

programs, (b) operations that are most time consuming, and (c) the type of operands that

are most frequently used.

ADESINA O.B/CTE 214 Page 79

A number of early studies were conducted in order to find out the typical break-

down of operations that are performed in executing benchmark programs. The esti-

mated distribution of operations is shown in Table 10.1.

A careful look at the estimated percentage of operations performed reveals that

assignment statements, conditional branches, and procedure calls constitute about

90% of the total operations performed, while other operations, however complex

they may be, make up the remaining 10%.

In addition to the above findings, studies on time – performance characteristics of

operations revealed that among all operations, procedure calls/return are the most

time-consuming. With regards to the type of operands used during typical

computation, it was noticed that the majority of references (no less than 60%) are

made to simple scalar variables and that no less than 80% of scalars are local

variables (to procedures).

The above observations about typical program behavior have led to the following

conclusions:

 Simple movement of data (represented by assignment statements), rather than

complex operations, are substantial and should be optimized.

 Conditional branches are predominant and therefore careful attention should be

paid to the sequencing of instructions. This is particularly true when it is

known that pipelining is indispensable to use.

 Procedure calls/return are the most time-consuming operations and therefore a

mechanism should be devised to make the communication of parameters

among the calling and the called procedures cause the least number of instruc-

tions to execute.

TABLE 10.1 Estimated Distribution of Operations

Operations Estimated percentage

Assignment statements 35

Loops 5

Procedure calls 15

Conditional branches 40

Unconditional branches 3

Others 2

ADESINA O.B/CTE 214 Page 80

 A prime candidate for optimization is the mechanism for storing and accessing

local scalar variables.

The above conclusions have led to the argument that instead of bringing the instruc-

tion set architecture closer to HLLs, it should be more appropriate to rather optimize

the performance of the most time-consuming features of typical HLL programs. This

is obviously a call for making the architecture simpler rather than complex.

Remember that complex operations such as long division represent only a small por-

tion (less than 2%) of the operations performed during a typical computation. One

then should ask the question: how can we achieve that? The answer is by (a) keeping

the most frequently accessed operands in CPU registers and (b) minimizing the

register-to-memory operations.

The above two principles can be achieved using the following mechanisms:

 Use a large number of registers to optimize operand referencing and reduce the

processor memory traffic.

 Optimize the design of instruction pipelines such that minimum compiler code

generation can be achieved.

 Use a simplified instruction set and leave out those complex and unnecessary

instructions.

The following two approaches were identified to implement the above three

mechanisms.

 Software approach. Use the compiler to maximize register usage by allocating

registers to those variables that are used the most in a given time period (this is

the philosophy adopted in the Stanford MIPs machine).

 Hardware approach. Use ample CPU registers so that more variables can be held

in registers for larger periods of time (this is the philosophy adopted in the Berkeley

RISC machine). The hardware approach necessitates the use of a new register

organization, called overlapped register window.

RISCs VERSUS CISC

The choice of RISC versus CISC depends totally on the factors that must be

considered by a computer designer. These factors include size, complexity, and

speed. A RISC architecture has to execute more instructions to perform the same

function performed by a CISC architecture. To compensate for this drawback, RISC

architectures must use the chip area saved by not using complex instruction decoders

in providing a large number of CPU registers, additional execution units, and

instruction caches. The use of these resources leads to a reduction in the traffic

between the processor and the memory. On the other hand, a CISC architecture with

a richer and more complex instructions, will require a smaller number of instructions

than its RISC counterpart.

ADESINA O.B/CTE 214 Page 81

However, a CISC architecture requires a complex decoding scheme and hence is

subject to logic delays. It is therefore reason-able to consider that the RISC and CISC

paradigms differ primarily in the strategy used to trade off different design factors.

There is very little reason to believe that an idea that improves performance for a RISC

architecture will fail to do the same thing in a CISC architecture and vice versa. For

example, one key issue in RISC development is the use of optimizing the compiler to

reduce the complexity of the hardware and to optimize the use of CPU registers. These

same ideas should be applicable to CISC compilers. Increasing

TABLE 10.3 RISC Versus CISC Performance

 MIPS CPI VAX CPI CPI Instruction

Application (RISC) (CISC) ratio Ratio

Spice 2G6 1.80 8.02 4.44 2.48

Matrix300 3.06 13.81 4.51 2.37

Nasa 7 3.01 14.95 4.97 2.10

Espresso 1.06 5.40 5.09 1.70

the number of CPU registers could very much improve the performance of a CISC

machine. This could be the reason behind not finding a pure commercially available

RISC (or CISC) machine. It is not unusual to see a RISC machine with complex floating-

point instructions (see the details of the SPARC architecture in the next sec-tion). It is

equally expected to see CISC machines making use of the register win-dows RISC idea.

In fact there have been studies indicating that a CISC machine such as the Motorola

680xx with a register window will achieve a 2 to 4 times decrease in the memory traffic.

This is the same factor that can be achieved by a RISC architecture, such as the Berkeley

RISC, due to the use of a register window.

It should, however, be noted that most processor developers (except for Intel and

its associates) have opted for RISC processors. Computer system manufacturers such

as Sun Microsystems are using RISC processors in their products. However, for

compatibility with the PC-based market, such companies are still producing CISC-

based products.

Tables 10.3 and 10.4 show a limited comparison between an example RISC and

CISC machine in terms of performance and characteristics, respectively.

An elaborate comparison among a number of commercially available RISC and

CISC machines is shown in Table 10.5.

It is worth mentioning at this point that the following set of common character-

istics among RISC machines is observed:

 Fixed-length instructions

ADESINA O.B/CTE 214 Page 82

 Limited number of instructions (128 or less)

 Limited set of simple addressing modes (minimum of two: indexed and PC-

relative)

 All operations are performed on registers; no memory operations

 Only two memory operations: Load and Store

TABLE 10.4 RISC Versus CISC Characteristics

 VAX-11 Berkeley RISC-1

Characteristic (CISC) (RISC)

Number of instructions 303 31

Instruction size (bits) 16-456 32

Addressing modes 22 3

No. general purpose registers 16 138

 Pipelined instruction execution

 Large number of general-purpose registers or the use of advanced compiler

technology to optimize register usage

 One instruction per clock cycle

 Hardwired control unit design rather than microprogramming

2 5 6 5 1 8 5

Type DST Op-Code SRC 1 0 FP-OP SRC 2

Type DST Op-Code SRC 1 1 Immediate Constant

 Figure 10.2 Three operand instructions formats used in RISC

3. Branch & Call: JMPX COND, (Rx)S; PC Rx þ S; where COND is a condition

4. Special Instructions: GETPSW Rd; Rd PSW

All arithmetic and logical instructions have three operands and have the form Desti-

nation : ¼ source1 op source2 (Fig. 10.2). The LOAD and STORE instructions may use

ADESINA O.B/CTE 214 Page 83

either of the indicated formats with DST being the register to be loaded or stored. The

low order 19 bits of the instructions are used to determine the effective address.

Instructions load and store 8-, 16-, 32-, and 64-bit quantities into 32-bit registers.

Two methods are provided for calling procedures. The CALL instruction uses a 30-

bit PC relative offset (Fig. 10.3).

The JMP instruction uses any of the instruction formats used for arithmetic and

logical operations and allows the return address to be put in any register.

RISC uses a three-address instruction format with the availability of some two-and one-

address instructions. There are only two addressing modes. These are indexed mode and

PC relative modes. The indexed mode can be used to synthesize three other modes. These

are base-absolute (direct), register indirect, and indexed for linear byte array modes.

RISC uses a static two-stage pipeline: fetch and execute.

The floating-point unit (FPU) contains thirty-two 32-bit registers to hold 32 single

precision (32-bit) floating-point operands, 16 double-precision (64-bit) operands, or eight

extended-precision (128-bit) operands. The FPU can execute about 20 floating-point

instructions most of them in single-, double-, or extended-precision using the first

instruction format used for arithmetic. In addition to instructions for loading and storing

FPUs registers, the CPU can also test FPUs registers and branch conditionally on results.

RISC employs a conventional MMU supporting a single paged 32-bit address space. The

RISC four-bus organization is shown in Figure 10.4.

